x تبلیغات
شرکت خشکه و فولاد پایتخت

لوله آلیاژی - لوله - لوله فولادی -لوله فلزی-pipe steel

 لوله (Pipe) یک مقطع توخالی استوانه ای است که عمدتاً از آن برای انتقال مواد قابل جریان. مانند مایعات، گازها، دوغاب ها و پودرها استفاده می شود. از لوله ها همچنین برای ساخت سازه ها استفاده می شود. مقاطع توخالی لوله ای، به مراتب سفتی بر اساس وزن واحد بیشتری نسبت به مقاطع توپر دارند. لوله از مواد مختلفی از جمله سرامیک، شیشه، فایبرگلاس، بسیاری از فلزات، بتن و پلاستیک ساخته می شود. در گذشته لوله های چوبی و سربی نیز مرسوم بودند.

لوله های فلزی به طور معمول از فولاد آلیاژهای آهن ساخته می شوند. مانند فولاد کربنی، فولاد زنگ نزن، فولاد گالوانیزه و چدن نشکن. لوله های پایه آهنی، در صورت استفاده در جریان آب اکسیژن دار در معرض خوردگی قرار دارند. از لوله های آلومینیوم ممکن است در مواردی استفاده شود که آهن با مایع سرویس ناسازگار باشد. با وزن یک پارامتر مشکل ساز باشد.

از لوله های مسی بیشتر برای سیستم های لوله کشی آب خانگی (قابل شرب). و لوله های سیستم های تبرید و کویل های انتقال حرارت (برای مثال در کندانسورها و رادیاتورها) استفاده میشود. از لوله هایی با جنس آلیاژهای اینکونل . فولاد کروم مولی و تیتانیوم برای دماها و فشارهای بالا در تأسیسات کارخانجات فرآیندی و نیروگاه ها استفاده میشود. ارزش بازار جهانی لوله های فولادی در سال 2019 برابر 142.4 میلیارد دلار بوده. و انتظار می رود از سال 2020 تا 2027 با نرخ رشد مرکب سالانه 6.2% رشد کند. و به 54.68 میلیارد دلار برسد.

لوله فولادی

لوله بدون درز – لوله یکپارچه

لوله بدون درز – Seamless pipe- که به مانیسمان نیز مشهور است. یکی از پرکابردترین محصولات فولادی است. که در صنعت نفت-پتروشیمی- گاز و همچنین در قطعه سازی مصارف فراوانی دارد. لوله های بدون درز در بازار همچنین به عنوان مقاطع ضخیم و بسیار مقاوم تحت فشار شناخته می شود. زیرا به دلیل یکنواخت بودن و نداشتن درز جوش. دارای مقاومت بسیار بالایی در مقابل فشار و تنش های فیزیکی است. به طوری که به خوبی خود را در هر نوع شرایط آب و هوایی مطابقت می دهد. پروسه تولید مانسمان برای ساخت لوله مانسمان از استاندارد ASTM. – به شماره A106 – A53. و همچنین استاندارد نفت و گاز API 5L استفاده می شود.

 

پروسه تولید لوله های مانیسمان نیز بدین گونه است که در آن یک شمش فولادی تحت کشش و نورد. افزایش طول یافته و سپس با وارد شدن میله جامد نوک تیز به مرکز شمش گذاخته شده. لوله ای بدون درز را ایجاد می کند.

تولید این نوع از سایزهای بزرگتر به کوچکتر است. و سایزهای 2/1 و 4/3 و 1 اینچ معمولاً به روش سرد است. در تولید این مقاطع عمدتاً از شمش های فولادی گرد استفاده می کنند. البته تولید لوله مانیسمان از مقاطع چهارگوش نیز امکان پذیر است. اما به دلیل اینکه این مقاطع حتماً باید به صورت دایره ای و یکنواخت باشند. گرد کردن شمش های زاویه دار مستلزم صرف هزینه و وقت خواهد بود.

در مجموع پروسه تولید لوله های مانسمان شامل مراحل برش. پیش گرم، مرحله Piercing، عبور از دستگاه الانگاتور، شلیک سمبه. تاب گیری، جداسازی سمبه، کروی سازی، مرحله کشش، خنک سازی، مرحله اندازه گیری. مرحله آزمایش، مرحله کونیک کردن، پولین و در پایان باندل کردن است.

تاریخ ابداع و ساخت لوله های بدون درز به اواخر قرن 19 بر می گردد. و این روش نخستین بار توسط مهندسی آلمانی بنام ((مانسمان))به کار رفت.

کاربرد لوله مانیسمان

کاربرد لوله مانیسمان

از کاربردهای این نوع لوله میتوان به موارد زیر اشاره نمود.

  • خطوط فشار قوی
    • خطوط ولتاژ بالا – واژه ولتاژ بالا یا فشار قوی به مدارهای الکتریکی ای اطلاق میگردد. که بخاطر میزان ولتاژ بالای موجود در آنها نیازمند تدبیرات ایمنی ویژه یا عایقبندی مناسب هستند. مدارهای ولتاژ بالا در انتقال انرژی الکتریکی,لامپ اشعه کاتد,اشعه ایکس بکار میروند.
    • ولتاژ بالا بمعنی ولتاژی بیش از 1000 ولت است. بدین معنی که ولتاژهای بیش از هزار ولت را ولتاژ بالا و زیر هزار ولت را ولتاژ پایین مینامند.
    • تأثیرات خطوط فشار قوی بر سلامتی : گفته میشود زندگی در نزدیکی خطوط فشار قوی احتمال بیماریهای نظیر سرطان,. ناباروری و برخی بیماریهای روانی را افزایش میدهد. یک راه حل مبارزه با این مشکل استفاده از خطوط زیر زمینی انتقال برق فشار قوی است.
    • حریم خطوط فشار قوی : برای حفظ مردم از اثرات سوء میدانهای مقناطیسی ناشی از خطوط فشار قوی, برای حفظ برق 20 کیلوولت 5 متر< 63کیلووت 13 متر, 132 کیلوولت 15متر, 230 کیلوولت 17متر و 400 کیلوولت 20 متر حریم در نظر گرفته شده است.
  • خطوط هیدرولیکی
  • خطوط صنایع دارویی و غذایی
  • خطوط نفت و گاز

لوله های پلاستیکی

 

لوله های پلاستیکی

لوله های پلاستیکی به دلیل خواصی از قبیل وزن سبک، مقاومت شیمیایی بالا. خواص غیر خورنده و سهولت در ایجاد اتصالات. بسیار مورد استفاده قرار می گیرند. مواد پلاستیکی مورد استفاده عبارتند از : پلی وینیل کلراید (PVC). پلی وینیل کلرید کلر دار (CPVC)، پلاستیک تقویت شده با الیاف (FRP). ملات پلیمر تقویت شده (RPMP), پلی پروپیلن (PP), پلی اتیلن (PE), پلی اتیلن چگالی بالا اتصال – عرضی (PEX). پلی پوتیلن (PB), و آکریلونیتریل بوتادین استایرن (ABS). در بسیاری از کشورها. لوله های پی وی سی بیشترین لوله های مورد استفاده برای لوله های دفنی توزیع آب آشامیدنی. و شبکه های فاضلاب هستند. محققان بازار پیش بینی می کنند. که کل درآمد جهانی لوله های پلاستیکی در سال 2019 بیش از 80 میلیارد دلار باشد. بازار اروپا در سال 2020 نزدیک به 12.7 میلیارد یورو خواهد بود.

سخت کاری سطحی قطعات با استفاده از آلیاژهای استلایت

 

سخت کاری سطحی قطعات با استفاده از آلیاژهای استلایت

سخت کاری

سختکاری سطحی قطعات صنعتی با استفاده از سوپرآلیاژهای پایه کبالت استلایت یکی از چالش های صنعتگران است. آلیاژهای استلایت به علت خواص منحصر به فرد خود در کاربردهای بسیاری در صنایع مختلف مورد استفاده قرار گرفته اند.

زمانیکه که حفظ سختی در دمای بالا، شرایط خورنده و انواع مکانیزم های سایش مطرح باشند. استلایت ها به خوبی برتری های خود را به نمایش می گذارند.

معمولاً آلیاژهای مقاوم به سایش، مقاومت به خوردگی بالایی ندارند. یا آلیاژهای مقاوم به حرارت، نظیر اینکونل ها و اینکولوی ها، مقاومت به سایش پایینی دارند. ولی آلیاژهای استلایت بطور همزمان می توانند در سه جبهه با این مکانیزم های مخرب فلزات بجنگند.

 

آلیاژهای استلایت مقاومت به سایش چسبان (Galling) بسیار خوبی دارند. به همین دلیل در شرایطی که آب بندی فلز روی فلز نیاز باشد. گزینه ی بسیار مناسبی هستند. این ویژگی باعث شده تا در صنایع شیرآلات خاص صنعتی. پمپ های فرآیندی و کنترل ولوها شاهد به کارگیری آلیاژهای استلایت در سیت، گیت، بال و … باشیم.

حفظ سختی و مقاومت به سایش در دمای بالا در آلیاژهای استلایت باعث شده. تا در فرآیندهای شکل دهی گرم فلزات، نظیر اکستروژن و کشش سیم کاربردهای زیادی پیدا کرده باشند.

مقاومت به خوردگی در فلز مذاب، باعث شده. تا در ساخت قطعات تحت سایش در وان های فلزات مذاب. بتوان آلیاژهای استلایت را بکارگیری کرد.

در این نوشتار، اصول کلی سخت کاری سطی قطعات صنعتی با استفاده از آلیاژهای استلایت. به روش جوشکاری مورد بحث قرار گرفته است. امید است این مطلب مورد استفاده ی صنعتگران بومی ساز قطعات خاص قرار گیرد.

فرآیندهای پوشش دهی آلیاژهای استلایت بر روی قطعات

 

فرآیندهای پوشش دهی آلیاژهای استلایت بر روی قطعات

  • روش پاشش حرارتی HVOF
  • جوش آرگون TIG
  • جوش کاری زیر پودری Submerged Arc Welding
  • جوش میگ MIG
  • جوشکاری به روش PTA
  • جوشکاری لیزر Laser Weld Doposition

هریک از این روشها دارای نقاط قوت و ویژگیهای خاص خود هستند. به عنوان مثال در روش HVOF، سرعت پاشش ذرات به مافوق صوت رسیده. و دمای سطح قطعه نسبت به روشهایی مانند TIG یا PTA بسیار پایین تر است. این روش چگالی ایجاد می کند. ولی ضخامت حاصل از آن معمولاً کمتر از یک میلی متر است.

روش PTA که در آن پودر فلز استفاده میشود. قابلیت اتوماتیک شدن خوبی دارد. این روش نرخ رسوب گذاری بالایی داشته و رقیق شدن توسط آهن زیر لایه کمتر در آن اتفاق می افتد.

شکل 1 انواع روش های پوشش دهی را به صورت شماتیک نشان می دهد.

سخت کاری
 

جوشکاری سطحی استلایت روی فولادهای مختلف

 

جوشکاری سطحی استلایت روی فولادهای مختلف

برای بررسی نکات فنی با اهمیت در سخت کاری سطحی. به روش های جوشکاری توسط آلیاژهای استلایت. موضوع را بر اساس – جنس زیر لایه در سه گروه کلی زیر بررسی می کنیم.

  • جوشکاری استلایت بر روی فولادهای کربنی.
  • جوشکاری استلایت بر روی فولادهای آلیاژی، مارتنزیتی و فولادهای ابزار.
  • جوشکاری استلایت بر روی فولادهای زنگ نزن آستنیتی و داپلکس

آلیاژهای استلایت

 

آلیاژهای استلایت

آلیاژهای استلایت آلیاژهایی با پایه ی کبالت هستند. مهم ترین عناصر آلیاژی استلایت ها، عناصر کربن، کروم، تنگستن، مولیبدن و نیکل می باشند.

همانطور که گفته شد. استلایت ها مقاومت بسیار خوبی به گالینگ و سایش چسبان فلز روی فلز دارند. این آلیاژها نیاز به روانکاری کمی داشته و ضریب اصطکاک پایینی دارند. به همین دلیل نسبت به Siding Wear مقاومت خوبی دارند. علاوه بر این آلیاژهای استلایت نسبت به اکسیداسیون دمای بالا، کاویتاسیون و فرسایش مقاومت مناسبی دارند.

 

روش تولید می تواند. بر سختی حاصل از یک آلیاژ اثرگذار باشد. شکل 2 سختی Stellite 6 حاصل از روش های گوناگون تولید در دماهای مختلف را نشان می دهد.

نظیر هر گروه از آلیاژهای دیگر، هر گرید استلایت برای یک دسته کاربرد خاص طراحی می شود. و بر همین اساس ترکیب شیمیایی آن تنظیم می شود.

به عنوان مثال آلیاژهایی که جنبه ی مقاومت به خوردگی آنها بالاست. معمولاً دارای کروم 28 تا 32 درصد بوده و خواص خوردگی نظیر فولاد زنگ نزن 316 دارند.

به علت نقش اساسی کربن در ایجاد مقاومت به سایش یا مقاومت به خوردگی، آلیاژهای استلایت را می توان. به دو دسته ی کلی زیر تقسیم بندی کرد.

  • استلایت های کاربیدی (درصد C > 0/08 )

این استلایتها توسط کاربیدهای کروم، تنگستن و یا مولیبدن استحکام می یابند. و به دو صورت هیپویوتکنیک (کاربیدهای M22C6) نظیر استلایت 6. و هایپریوتکتیک (کاربیدهای M7C3) نظیر استلایت 1 گروه بندی می شوند.

  • استلایتهای محلول جامد (C< 0/4)

 

این دسته از آلیاژهای استلایت معمولاً مقاومت به ضربه و مقاومت به خوردگی مناسب تری نسبت به گروه اول دارند. این دسته را به دو گروه زیر میتوان متمایز کرد.

— آلیاژهای استلایت کبالت، کروم، مولیبدن (بدون تنگستن) نظیر Stellite 21.

— آلیاژهای استلایت کبالت، کروم، مولیبدن، نیکل (با تنگستن پایین) نظیر Ultimet.

  • آلیاژهای مقاوم به سایش توسط کار سخت شدن

شکل 3 ریز ساختار بعضی از آلیاژهای استلایت را نشان می دهد.

جدول 1 – ترکیب شیمیایی آلیاژهای معروف استلایت

یک ویژگی مهم آلیاژهای استلایت مقاومت به سایش در دمای بالاست. سختی همواره به عنوان یک پارامتر ملموس برای ارزیابی مقاومت به سایش تلقی می شود. ولی این معیار همیشه نمی تواند. ارزیابی صحیحی به ما ارائه دهد. در آلیاژهای استلایت به علت وجود ذرات کاربیدهای تنگستن. مقاومت به سایش بالاتری نسبت به یک فولاد با همان عدد سختی حاصل می شود.

 

شکل 4 سختی داغ چند آلیاژ استلایت را در مقایسه با فولاد ابزار گرم کار H13. در دماهای مختلف نشان می دهد.

شکل 5 نیز سختی داغ آلیاژهای مختلف استلایت را در دماهای مختلف مقایسه می کند.

سخت کاری

شکل 6 اثر سختی داغ بر فرسایش دمای بالا در استلایت 1 را نشان می دهد. همان طور که دیده می شود. افت سختی از DPH 320 به 220 باعث دو برابر شدن فرسایش داغ شده است.

سخت کاری

جوشکاری استلایت بر روی فولادهای کربنی

 

جوشکاری استلایت بر روی فولادهای کربنی

فولاد های سادۀ کربنی که به فولادهای غیر آلیاژی نیز شناخته می شوند. در سیستم کد گذاری بین المللی UNS با حرف G آغاز می شوند. این فولادی در سیستم AISI و SAE بصورت 10XX ,11XX,12XX و 15XX شناسایی می شوند.

در بازار ایران معروف ترین گریدهای این فولادها را می توان. St37 – St13 – St14 – St14 – St44 – St22 – St52 در فولادهای ساختمانی و Ck22 – Ck45 – Ck35 – Ck60 در فولادهای صنعتی نام برد.

بصورت کلی جوش پذیری یک فولاد با سختی پذیری آن نسبت مستقیم دارد. و هر چه سختی پذیری افزایش یابد. جوش پذیری پایین می آید. این موضوع بخاطر شکل گیری یک لایۀ ترد. در منطقۀ متأثر از حرارت زیر جوش (HAZ) در داخل فلز پایه می باشد.

وقتی سختی پذیری یک فولاد بالا باشد. در اثر سریع سرد شدن منطقۀ زیر جوش، فازهای ترد مارتنزیتی تشکیل می شود. که مقاومت به ضربۀ پایینی دارد. این مسأله وقتی کربن بالاتر از 0/5 درصد باشد. اهمیت فراوانی می یابد.

برای کاهش سرعت سرد شدن، بهترین روش پیش گرم کردن قطعۀ کار می باشد. برای تعیین میزان پیش گرم مورد نیاز و ارزیابی جوش پذیری یک فولاد. از معیاری با عنوان کربن معادل (CE) استفاده می شود. این معیار مستقیماً ترکیب شیمیایی یک فولاد را به جوش پذیری آن ارتباط داده. و از طریق رابطۀ زیر محاسبه می شود.

 

بعنوان مثال می توان مشاهده کرد. برای فولادهایی مثل St37 , St12 که کربن معادلی در حدود 0/2 دارند. هیچ پیش گرمی نیاز نیست. اما برای فولادهایی مثل Ck45 که کربن معادل آن حدود 0/5 می باشد. به حدود 170 درجۀ سانتی گراد پیش گرم نیاز است.

برای استفاده از این نمودار به دو نکته باید توجه کرد. یکی اینکه این پیش گرم با هدف جلوگیری از سریع سرد شدن منطقۀ کنار جوش می باشد. و بنابراین اندازۀ قطعه نیز اثر گذار است. و دیگر اینکه پیش گرم همواره می تواند. مفید باشد زیرا اثر رطوبت یا چربی موجود بر روی قطعه و همچنین تنش های انقباضی را کاهش می دهد.

 

هرچه که کربن معادل از 0/5 بیشتر باشد. تشکیل مارتنزیت اجتناب ناپذیر است.

در این شرایط عملیات حرارتی پس از جوشکاری PWHT ضروری می شود.

 

انتخاب دمای این عملیات حرارتی با توجه به گرید فولاد انتخاب می شود. و معمولاً 50 درجه ی سانتی گراد پایینتر از دمای تمپر همیشگی آن فولاد است. معمولاً قطعات جوشکاری شده بلافاصله پس از جوشکاری بمدت یک تا دو ساعت در کورهه قرار می گیرند.

فولادهای زنگ نزن آستنیتی و داپلکس

 

فولادهای زنگ نزن آستنیتی و داپلکس

جوشکاری استلایت بر روی سطح فولادهای زنگ نزن بسیار متداول است. انجام اینکار کاملاً متفاوت از فولادهای کربنی، کم آلیاژ و ابزار است. در اینجا کربن معادل اهمیت چندانی ندارد. ولی مهم این است که بدانیم چه گروه و گریدی را سخت کاری می کنیم.

شکل 8 مهمترین گریدهای فولادهای زنگ نزن آستنیتی را نشان می دهد. در فولادهای زنگ نزن آستنیتی، نظیر 304 و 316، شکل گیری فاز ترد. در منطقۀ متأثر از حرارت زیر جوش رخ نمی دهد. زیرا وجود مقادیر بالای نیکل مانع از تبدیل شبکه FCC آستنیت به شبکۀ BCC مارتنزیت می شود.

برا مطالعه ی بیشتر به ادامه ی مطلب مراجعه کنیدمدرك داشتن

 

برای جوشکاری سطحی استلایت روی این گروه. دمای پیش گرم 50 درجه سانتی گراد تا 150 درجه سانتی گراد کافی است. و پس از جوشکاری قطعه باید به آرامی سرد شود.

مشکل اصلی در جوشکاری سطحی فولادهای زنگ نزن، ورود کربن از آلیاژ استلایت به منطقۀ متأثر از حرارت است. با توجه به مقادیر بالای کربن در اکثر آلیاژهای استلایت، این پدیده به سادگی روی می دهد. کربن وارد شده به منطقۀ کنار جوش در فولاد زنگ نزن، باعث ایجاد پدیدۀ حساس شدن می شود. این فرآیند که از آن به خوردگی کنار جوش نیز یاد می شود.

در اثر تشکیل کاربید کروم در مرز دانه های فولاد زنگ نزن ایجاد می شود. شکل 9 این پدیده را از نقطه نظر میکروسکوپی نشان می دهد. تشکیل کاربید کروم در مرز دانه ها باعث می شود. تا لایۀ محافظ اکسید کروم پیوسته روی سطح فولاد زنگ نزن در منطقۀ متأثر از حرارت شکل نگرفته. و مقاومت به خوردگی این ناحیه به شدت کاهش یابد.

 

سخت کاری

ساختار میکروسکوپی فولادهای زنگ نزن داپلکس شامل دانه های فریت و آستنیت تقریباً با نسبت برابر می باشد. این گروه فولادهای زنگ نزن معمولاً مقاومت به خوردگی تنشی بهتر و استحکام و سختی بالاتری. نسبت به فولادهای زنگ نزن آستنیتی دارند. داپلکس ها کاربردهای وسیعی در صنایع نفت و گاز و پتروشیمی دارند. مقاومت در محیطهای کلریدی، استحکام کششی بالا و مقاومت به کاویتاسیون دلیل این امر است.

 

جدول 2 ترکیب شیمیایی فولادی زنگ نزن داپلکس را نشان می دهد.

سخت کاری

در اثر سخت کاری سطحی توسط جوشکاری، داپلکس ها هم مانند فولادهای زنگ نزن آستنیتی حساس شده. و دچار خوردگی منطقۀ کنار جوش می شوند. علاوه بر این در این فولادها امکان تشکیل فازهای ترد ثانویه در زیر لایۀ جوشکاری شده وجود دارد. این فازهای ثانویۀ ترکیبات بین فلزی، کاربیدها و نیتریدهایی هستند. که در اثر قرار گرفتن در دمای بالا تشکیل می شوند. و مقاومت به خوردگی و یا چقرمگی را کاهش می دهند.

از نقطه نظر سخت کاری سطحی، بزرگترین مشکل کار با این فولادها تشکیل فازهای تردی نظیر سیگما.چی، و آلفا پرایم در مدت زمان کوتاه سیکل حرارتی حاصل از جوشکاری است.

 

این فازها در محدوده دمایی 300 درجه سانتی گراد تا 1000 درجه سانتی گراد تشکیل می شوند. طبیعی است که در حین جوشکاری مطنقۀ وسیعی در زیر جوش در این ناحیۀ حرارتی ترد شدن قرار می گیرند. به همین دلیل بهتر است. فولادهای داپلکس پیش گرم نشوند.

بسته به هندسه و ابعاد قطعات و همچنین گرید استلایت مورد استفاده باید سریع تر نرخ سرد شدن ممکن. برای دماهای بین پاسی و آخر کار در نظر گرفته شود. تا منطقه متأثر از حرارت در زمان کمتری در محدوده دمایی ترد شدن قرار گیرد. دمای بین پاسی بهینه برای این فولادها در محدوده 150 درجه سانتی گراد تا 200 است.

البته راهکار بهتر استفاده از یک لایه بافری زیر لایه استلایت می باشد. استفاده از سوپرآلیاژ پایه نیکل Inconel 625 به عنوان اولیه لایه جوشکاری شده بدون انجام هیچ پیش گرمی می تواند. ریسک پدیده های فوق الذکر را تا حد زیادی کاهش دهد.

یکی از پدیده هایی که در حین سخت کاری سطحی آلیاژهای استلایت. بر روی قطعات صنعتی به وفور دیده می شود. پدیده رقیق شدن است. رقیق شدن معمولاً خود را به شکل افت سختی حاصل از سخت کاری. نسبت به سختی مورد انتظار نشان می دهد. ماجرا از آنجا آغاز می شود. که در حین جوشکاری سطحی، مقداری از فلز زیر لایه یا همان قطعه در لایه استلایت حل می شود. و در نتیجه مقدار آهن موجود در لایه را نسبت به ترکیب استاندارد استلایت افزایش می دهد. این وضعیت اثرات زیر را به همراه دارد.

 

کاهش مقاومت به خوردگی آلیاژ استلایت در محیط های با خورندگی بالا. در اثر کاهش درصد کروم لایه سطحی، هرچند در این شرایط ممکن است. مقاومت به خوردگی استلایت از بسیاری فولادهای زنگ نزن بالاتر باشد.

  • افت سختی حاصل از جوشکاری استلایت
  • کاهش مقاومت به سایش در اثر افزایش انرژی نقص در چیده شدن اتم ها برای زمینه کبالتی. که اثر بالایی به خصوص بر مقاومت به گالینگ دارد.
  • کاهش کربن محتوای لایه استلایت که کاهش سختی و مقاومت به انواع سایش را به همراه دارد.
  • رقیق شدن به آهن و یا نیکل باعث کاهش حجم فازهای تردی نظیر کاربیدها شده. و مقاومت به ضربه لایه را افزایش می دهد.

همانطور که در شکل 10 دیده می شود. 6 درصد رقیق شدن توانسته است. مقاومت به سایش خراشان استلایت 1 را تا 6 برابر و سایش چسبان را تا حدود دو برابر کاهش دهد.

رقیق شدن پدیده ای غیر قابل اجتناب است. اما سوال اینجاست که تا چه حد مجاز می باشد. پاسخ این سوال با دانستن شرایط کاری نظیر خورندگی محیط، مقاومت به سایش مورد نیاز، سختی قطعات درگیر با قطعه. ضخامت لایه مورد نیاز، مقدار ماشین کاری پس از جوشکاری و … داده شود.

هرچه تعداد پاس های جوش داده شده افزایش یابد. اثر رقیق شدن به ویژه در لایه های رویین کمتر می شود. بهتر است فرآیند کار به نوعی طراحی شود. که پس از ماشین کاری حداقل 2 میلی متر از لایه استلایت روی سطح باقی مانده باشد.

 

پارامترهای جوشکاری، هندسه جوش، مهارت جوشکار، ضخامت لایه اولیه جوشکاری شده. و جنس زیر لایه بر رقیق شدن تأثیر گذار است. شکل 11 موقعیت صحیح تورچ و فیلر را در جوش آرگون نشان می دهد.

مقدم بر پارامترهای فرآیند، نوع خود فرآیند بر میزان رقیق شدن تأثیر به سزایی دارد. شکل 12 رقیق شدن استلایت 12 را در دو روش TIG و PTA مقایسه کرده است. همانطور که دیده می شود. رقیق شدن استلایت از مقدار 50 درصد آهن در خط ذوب. به سرعت به حدود 5 درصد در فاصله حدود 4 میلیمتری از خط ذوب فلز پایه می رسد. روش PTA رقیق شدن کمتری را نسبت به روش FTG نشان می دهد. دقت شود که این دو روش در شرایط تنظیم بهینه پارمترها با هم مقایسه شده اند.

 

همانطور که مشاهده می شود. در روش PTA در فاصله یک میلی متر از خط ذوب، رقیق شدن به کمتر از 10 درصد می رسد.

اثر میزان رقیق شدن بر سختی حاصل از لایه استلایت 12 در شکل 13 نشان داده شده است.

شکل 14 اثر رقیق شدن توسط آهن در دماهای مختلف بر سختی آلیاژ معروف استلایت 6 را نشان می دهد. همانطور که دیده می شود. رقیق شدن بیش از 10 درصد در دماهای مختلف اثر زیادی نداشته. و نمودار بین 10 تا 20 درصد در دماهای مختلف به شکل صاف است.

سخت کاری

شکل 15 اثر دما و رقیق شدن توسط آهن بر سختی استلایت 6 را مشخص می کند. همانطور که دیده می شود. با افزایش دما تأثیر رقیق شدن بر افت سختی لایه استلایت بیشتر می شود.

سخت کاری
 

میلگرد استیل 420-لوله استیل 420- ورق استیل 420-فولاد زنگ نزن – فولاد ضد زنگ-استیل X2-Cr13 – استیل C

 

میلگرد استیل 420-لوله استیل 420- ورق استیل 420-فولاد زنگ نزن – فولاد ضد زنگ-استیل X2-Cr13 – استیل C 56 -فولاد آلیاژی – فولاد حرارتی

استیل 420- میلگرد استیل 420- ورق استیل 420-فولاد زنگ نزن - فولاد ضد زنگ

استیل 420 از سری 400 استیل های زنگ نزن، محصولاتی عموماً با قابلیت شکل پذیری بالا و مقاومت زیاد در برابر خوردگی هستند. از دیگر ویژگی های این سری به خاصیت بگیر و همیشه مغناطیسی بودنشان اشاره می شود.

جایی که میزان کم کربن و ایفای نقش پر رنگ توسط کروم و مولیبدن. این فولاد را به محصولات پر کاربردی در ساخت وسایل مختلف تبدیل کرده است.

ترکیب شیمیایی

استیل 420 به عنوان یکی از زیرشاخه های سری 400 محصولی که آن را در آمریکا به نام S42000. در انگلیس با نام C 56 و در سایر نقاط اروپا با نام X2-Cr13 می شناسند. به عنوان یکی از سخت ترین ورق استیل های موجود بواسطه داشتن مقدار زیادی کروم شناخته می شود.

شاید بتوان مهمترین عامل پیدایش ویژگی های منحصر بفرد این محصول را داشتن کرومی 12 الی 14 دانست. که از بیشتر استنلس استیل ها دارای عدد بزرگتریست (گفتنیست که اعداد بزرگتری نیز مانند کروم 17 درصدی در استیل 430 فریتی و… به چشم می خورد). در همین رابطه استیل های 420 دارای حداقل 0.15% کربن0.1%، منگنز 1.% سیلیسیم 0.04%، فسفر 0.03% گوگرد هستند.

 

این محصولات در طی عملیات حرارتی به وجود می آیند. و علاوه بر مقاومت بالا در برابر خوردگی و پولیش کاری. دارای انعطاف پذیری بالایی (به ویژه در حالت آنیل شده) نیز هستند.

دیگر اعضای این سری مانند استیل های 410، 416 و C 440 از جمله مهمترین محصولات مشابه با قابلیت جایگزینی با این محصول هستند. البته با این توضیح که ویژگی های کاربردی این محصولات نیز با کاری که در پیش است. همخوانی داشته و مثلاً از نظر شرایط کاری، دمای فرایند، غلظت مواد در ارتباط با فلز (مثلاً اسید و کلریدها). و یا نحوه فرآوری محصول همخوانی داشته باشند.

ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

آدرس اینستاگرام:https://www.instagram.com/folad_paytakht

کاربرد استیل 420- ویژگی استیل 420

 

کاربرد

علاوه بر قاشق و چنگال هایی که به آنها اشاره شد. این محصولات برای ابزار آلات جراحی، ساخت تیغه های برشی و دریچه های سوزنی نیز مورد استفاده قرار می گیرند.

میلگرد استیل 420

کاربردها در میلگرد استیل 420

ماشین اجزا، سوپاپ و پمپ، کارد و چنگال، لوازم جراحی، تیغه های توربین های بخار، دسته های بازویی کوچک، لوازم ورزشی، ابزار آلات و…

مقاومت خوردگی:

مناسب برای خوردگی های محیطی

بهترین مقاومت در برابر خوردگی این فولاد در کوئنچ تمپر در دمای 200 درجه سانتی گراد می باشد.

ویژگی

تا مرز 650 درجه سانتی گراد به صورت سرویس متداول و تا 750 درجه سانتی گراد به صورت سرویس تناوبی

جوش پذیری:

چون میلگرد استیل 420 آلیاژ سخت شده هوایی است. یک پیش گرمایی ما بین دمای 200 الی 250 درجه سانتی گراد قبل از جوش دادن باید صورت گیرد.

بعد از انجام جوش باید 6 الی 8 ساعت، در دمای 700 الی 750 درجه سانتی گراد آنیل و سپس سرد کردن هوایی صورت گیرد.

عملیات حرارتی:

آنیل 800 – 750 درجه سانتی گراد/سرد کاری آهسته

سخت کاری : 1030-980 درجه سانتی گراد

بازگشت: 650 – 600 درجه سانتی گراد

ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

آدرس اینستاگرام:https://www.instagram.com/folad_paytakht

فولاد ضد زنگ Stainless Steel

 

فولاد ضد زنگ Stainless Steel

فولاد استنلس استیل-فولاد ۴۴۰۱-فولاد ضد زنگ-فولاد ضد سایش

فولادها بطور معمول هنگامی که با اکسیژن موجود در هوا ترکیب می شوند. اکسید آهن یا همان زنگ آهن در آنها پدیدار می گردد. اما فولادهای زنگ نزن با وجود عنصر کرو م و با داشتن یک لایه اکسید کروم. مقاومت بسیار خوبی در برابر زنگ زدگی (اکسید آهن) پیدا می کنند.

خصوصیات فولاد ضد زنگ

حداقل میزان درصد کروم در فولادهای ضد زنگ 11 درصد می باشد. این میزان از کروم در فولادهای ضد زنگ باعث ایجاد اکسید کروم در این گروه از فولاد می شود. که مهمترین خصوصیت این دسته از فولاد که مقاومت در برابر رطوبت، اکسایش و خوردگی می باشد را ایجاد می کند. علاوه بر این فولادهای ضد زنگ از خصوصیت استحکام عالی، ماشین کاری خیلی خوب، مقاومت به پوسته ای شدن عالی نیز برخوردار هستند.

فولاد ضد زنگ Stainless Steel

 

فولاد ضد زنگ Stainless Steel

فولاد استنلس استیل-فولاد ۴۴۰۱-فولاد ضد زنگ-فولاد ضد سایش

فولادها بطور معمول هنگامی که با اکسیژن موجود در هوا ترکیب می شوند. اکسید آهن یا همان زنگ آهن در آنها پدیدار می گردد. اما فولادهای زنگ نزن با وجود عنصر کرو م و با داشتن یک لایه اکسید کروم. مقاومت بسیار خوبی در برابر زنگ زدگی (اکسید آهن) پیدا می کنند.

خصوصیات فولاد ضد زنگ

حداقل میزان درصد کروم در فولادهای ضد زنگ 11 درصد می باشد. این میزان از کروم در فولادهای ضد زنگ باعث ایجاد اکسید کروم در این گروه از فولاد می شود. که مهمترین خصوصیت این دسته از فولاد که مقاومت در برابر رطوبت، اکسایش و خوردگی می باشد را ایجاد می کند. علاوه بر این فولادهای ضد زنگ از خصوصیت استحکام عالی، ماشین کاری خیلی خوب، مقاومت به پوسته ای شدن عالی نیز برخوردار هستند.

تأثیر عناصر آلیاژی در فولادهای ضد زنگ

 

 

تأثیر عناصر آلیاژی در فولادهای ضد زنگ

کاهش عنصر کروم و کربن برای حذف تشکیل کاربید کروم برای کاهش خوردگی بین دانه ای (L304-347-321-I316)

مقدار افزایش عنصر مولیبدن برای افزایش مقاومت در برابر خوردگی حفره ای (316)

مقدار افزایش درصد عنصر کروم و نیکل برای استحکام در دمای بالا و مقاومت در برابر پوسته ای شدن (310-309)

میزان افزایش تیتانیوم و نیوبیوم برای ایجاد خاصیت جوش پذیری (1.4016)

خواص مثبت

مقاومت بالا در برابر اکسایش

میزان مقاومت در برابر رطوبت

مقاومت در برابر تنش های حرارتی

مقاومت بالا در مجاورت مواد خورنده

 

استحکام خیلی خوب

ماشین کاری خوب

مقاومت به پوسته ای شدن

خواص منفی

جوش پذیری (در بعضی از فولادهای این گروه جوشکاری سخت می باشد)

 

ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

فولاد ۴۰۱۶-میلگرد ۴۰۱۶-ورق استیل ۴۰۱۶-تسمه استیل

 

 

فولاد ۴۰۱۶ یا استیل ۴۳۰ برخلاف استیل های ۳۰۴ و ۳۱۶، استیل های سری ۴۰۰ از نوع فولادهای زنگ نزن مارتنزیتی (فولاد ضد زنگ) هستند. و مانند بسیاری از فولادها قابلیت سختی پذیری از طریق عملیات حرارتی کوئنچ-تمپر را دارا می باشند.

همچنین ساختار مارتنزیتی آنها سبب جذب آهنربا میشود. لذا در اصطلاح به «استیل بگیر» معروف هستند. این فولادها دارای حداقل ۱۱٫۵ درصد کروم می باشند. به همین دلیل خرید استیل بگیر و همینطور فروش استیل بگیر همیشه در بازار آهن آلات مطرح بوده است.

 

یکی از رایج ترین و ارزان ترین انواع ورق استیل، ورق استیل بگیر ۴۳۰ (فولاد ۴۰۱۶) میباشد. که در دو نوع مات و براق در بازار موجود است. استنلس استیل گرید ۴۳۰ که با شماره استاندارد ۱٫۴۰۱۶ مشهور است. جزء فولادهای کم کربن، نرم و حاوی مقدار قابل توجهی کروم است و قابلیت عملیات حرارتی ندارد. این استیل به دلیل مقاومت در برابر خوردگی و انعطاف پذیری خوب معروف است. همچنین دارای خاصیت مغناطیسی بوده و جذب آهن ربا می شود. و با توجه به مقاومت آن در برابر اسید نیتریک می توان در کارهای شیمیایی خاص از آن استفاده کرد. به طور کلی، مقاومت به خوردگی استنلس استیل های سری ۴۰۰ نسبت به استنلس استیل های سری ۳۰۰ (استیل های آستنیتی) پایین تر است.

گرید ۴۳۴ دارای ویژگی های مشابه استیل ۴۳۰ (فولاد ۴۰۱۶) است. اگرچه این یک نسخه حاوی مولیبدن است. وجود مولیبدن باعث افزایش مقاومت خوردگی استیل می شود.

از مهمترین پارامترها در انتخاب استیل ۴۳۰ می توان به ابعاد ورق استیل به متر، ضخامت ورق به میلیمتر. و طول رق که به صورت ۶ متری و ۳ متری و یا رول ، و آلیاژ ۴۳۰ و ۴۱۰ می توان اشاره کرد. که تمام این موارد در محاسبه قیمت ورق استیل ۴۳۰ نقش مهمی دارند.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان ))
صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

فولادهای پر کاربرد ضد زنگ در ایران

 

فولادهای پر کاربرد ضد زنگ در ایران

فولاد 4401 -ورق 4401-میلگرد 4401-لوله 4401-فولاد زنگ نزن آستنیتی (نگیر)-استنلس استیل

1.4000 با استاندارد DINX6Cr13

فولاد بگیر (زنگ نزن فریتی) 1.4000 دارای خصوصیت عملیات حرارتی و قابلیت مغناطیسی خوب می باشد. و از آن می توان در ساخت پره توربین های بخار و قطعات تحت تنش زیاد در محیط های آب و بخار استفاده نمود.

1.4057 با استاندارد DIN X17CrNi16-2

فولاد بگیر (زنگ نزن فریتی) 1.4057 با خصوصیت عملیات حرارت پذیر، عملیات مغناطیسی. استحکام بالا و مقاومت به خوردگی فولادی مناسبت برای استفاده در صنایع شیشه و بلور، صنایع سد سازی. صنایع صابون سازی، صنایع غذایی، سازه های دریایی، اجزاء هواپیما، صنایع قالب سازی. صنایع ماشین سازی و شفتینگ قطعات ساختاری با استحکام بالا و همچنین قالب با قابلیت پولیش خوب برای تولید لنز می باشد.

 

1.4301

فولاد زنگ نزن آستنیتی (نگیر) 1.4301 غیر قابل عملیات حرارتی و غیر مغناطیسی بوده. اما قابلیت جوشکاری به همراه قابلیت پرداخت بالا و کشش عمیق را دارا می باشد. از این فولاد می توان برای ساخت انواع لوازم خانگی، تجهیزات خار و بار، صنایع کارد و چنگال، تجهیزات پزشکی. صنایع خودرو و تجهیزات بهداشتی استفاده نمود.

1.4305 با استفاده DIN X8CrNIS 18-9

فولاد زنگ نزن آستنیتی (نگیر) 1.4305 دارای مقاومت به خوردگی بالا. دارای قابلیت پرداخت بالا در کشش عمیق، ماشین کاری خوب و با قابلیت جوشکاری بوده. که غیر قابل عملیات حرارتی و غیر مغناطیسی نیز می باشد. از این فولاد برای ساخت در قطعات مهندسی خوش تراش که تحت خورندگی بالا قرار دارند. پیچ و مهره صنایع شیمیایی و موارد مشابه دیگر که نیاز به ماشین کاری خوب دارند استفاده نمود.

اسامی فولادها

1.4000-X6Cr13

1.4006 – X12Cr13

1.4016 – X6Cr17

1.4021 – X20Cr13

1.4028 – X30Cr13

1.4057 – X17CrNi16-2

1.4301 – X5CrNi18-10

1.4305 – X8CrNis 18-9

1.4305 – X2CrNi 19-11

1.4401 – X5CrNiMo 17-12-2

1.4404 – X2CrNiMo 17-13-12

1.4541 – X6CrNiTi 18-10

1.4571 – X6CrNiMoTi 17-12-2

فولاد 4401

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

فولاد 4541

فولاد 4541-میلگرد 4541-لوله 4541-فولاد زنگ نزن-استیل 321-فولاد نسوز-استنلس استیل

فولاد 1.4541-X6CrNiTi 18-10-که در بازار با نام استیل 321 هم شناخته می شود. یکی دیگر از فولادهای زنگ نزن پرکاربرد می باشد. می توان این آلیاژ را دسته استیل های نسوز در نظر گرفت.همچنین مشابه خیلی از استیل ها خاصیت مغناطیسی ندارد و با نام نگیر شناخته می شوند. به طور کلی فولاد پر مصرف ترین فلز در صنایع مختلف می باشد.

فولاد در انواع ساده کربنی، آلیاژی و زنگ نزن تولید می شود. نوع زنگ نزن یا استیل در بازار ایران با نام استیل شناخته می شود. این فولادها طول عمر بیشتری نسبت به نوع ساده کربنی دارند. و گران تر از آنها می باشند. استیل 321 در مقاطع ورق و میلگرد تولید می شود. ویژگی اصلی میلگرد های زنگ نزن مقاومت شدید آنها در برابر خوردگی و زنگ زدگی می باشد. این میلگردها در بازار آهن آلات با نام میلگرد استیل و کد سه رقمی معرفی آلیاژشان معروف هستند.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

تأثیر فلز پرکننده بر خواص اتصال غیر مشابه آلیاژ فولادی 4130 به فولاد زنگ نزن 316L پارت اول

 

فولاد 4130 - ورق 4130 - تسمه 4130- گرد 4130- فولاد حرارتی-فولاد ضد خوردگی-فولاد ابزار

تأثیر فلز پرکننده بر خواص اتصال غیر مشابه آلیاژ فولادی 4130 به فولاد زنگ نزن 316L

در این پژوهش، اتصال غیر مشابه فولاد کم آلیاژ 4130. به فولاد زنگ نزن 316L به روش جوشکاری قوسی تنگستن – گاز. مورد بررسی قرار گرفت. از دو فلز پر کننده ERNiCr-3 و فولاد زنگ نزن ER309L به این منظور استفاده شد. پس از جوشکاری، ریزساختار مناطق مختلف هر اتصال شامل فلز جوش. مناطق متأثر از حرارت و فصل مشترک ها با استفاده از میکروسکوپ نوردی و میکروسکوپ الکترونی روبشی (SEM) نشان داد. که در آزمون ضربه، شکست نمونه ها به صورت نرم می باشد. در آزمایش کشش نمونه جوش داده شده با سیم جوش ER309L از فولاد پایه 316L دچار شکست شد.

اما نمونه جوش داده شده با سیم جوش ERNiCr-3 از محل جوش دچار شکست شد. بررسی ها نشان دهنده وجود ساختار دندریتی در فلزات جوش پایه نیکلی بود. ریز ساختار فلز پرکننده فولاد ER309L به صورت سلولی – دندریتی بوده. و به دلیل وجود فاز فریت دلتا در نواحی بین دندریتی آستنیت زمینه. هیچ گونه ترکی در این اتصال مشاهده نشد.

 

این فولاد 4130 AISI فولادی کم آلیاژ با استحکام بالا و عملیات حرارتی پذیر می باشد. این فولاد دارای میزان کربن متوسط بوده و دارای عناصر آلیاژی نظیر کروم، مولیبدن، منگنز و دیگر عناصر می باشد. کاربرد این نوع فولادها در صنایع نفت و نیروگاه های برق می باشد. همچنین به دلیل مقاومت در برابر اکسید شدن. و استحکام بسیار خوب در درجه حرارت های بالا. در انواع مولد ها و مبدل های حرارتی کاربرد دارد. این فولاد همچنین در مخازن تحت فشار در صنایع پتروشیمی نیز استفاده می شود. این گروه فولادها به صورت نرماله، تمپر می شود و کوئنچ – تمپر می شود بکار می رود. کروم در فولاد، مقاومت به خوردگی و مولیبدن استحکام در درجه حرارت های بالا را افزایش می دهد.

 

فولاد زنگ نزن 316 پس از فولاد زنگ نزن 304 دومین فولاد زنگ نزن رایج. در بین فولادهای زنگ نزن آستنیتی است. این فولاد به فولاد زنگ نزن گرید دریایی نیز معروف است. و معمولاً شامل 16 درصد کروم، 10 درصد نیکل و دو درصد مولیبدن است. تغییر در نسبت کروم و نیکل و افزودن مولیبدن باعث مقاومت بیشتر این فولاد در مقابل خوردگی. به ویژه خوردگی ناشی از کلر می گردد. و به این دلیل برای تجهیزاتی که باید در تماس زیاد. با عوامل خورنده نظیر مواد شیمیایی حلال ها، و آب شور باشند، مناسب است. فولاد زنگ نزن 316 در صنایع مختلفی نظیر نفت، گاز، پتروشیمی، صنایع غذایی و دارویی مصارف گوناگونی دارد. از این آلیاژ برای ساخت لوله و ورق های مقاوم در محیط های اسیدی استفاده می شود. و قیمت آن نسبت به گریدهای مشابه مانند فولاد زنگ نزن 304 بیشتر است.

 

اتصال غیر مشابه فولادهای زنگ نزن به فولادهای کم آلیاژ با استحکام بالا. در صنایع مختلفی نظیر نفت، گاز، پتروشیمی، نیروگاه های حرارتی. و صنایع غذایی دارای کاربردهای فراوان می باشد. در اکثر صنایع مذکور خطوس لوله انتقال دهنده سیالات و نازل ها. از جنس فولاد زنگ نزن و مخازن و قسمت های تحت فشار سیستم. از جنس فولاد کم آلیاژ تولید می شوند. و اتصال این اجزا به روش جوشکاری انجام می گردد. و یکی از اتصالات اساسی موجود در این صنایع می باشد. با توجه به کاربرد گسترده فولادهای کم آلیاژ و فولادهای زنگ نزن در صنایع مختلف. و نیاز فراوان به اتصال این دو نوع فولاد به یکدیگر. توسعه و بهینه سازی خواص این اتصال همواره مورد نظر قرار می گیرد. در گذشته کاربرد فیلرهای مختلف در اتصال این نوع فولادها مورد بررسی قرار گرفته است.

 

پانیندرا و همکاران به بررسی خواص اتصال غیر مشابه فولادهای AISI 4140. و AISI 316 ایجادی با روش جوشکاری قوسی تنگستن – گاز (GTAW) پرداختند. در این بررسی محققان خواص اتصال را در دو حالت بدون فلز پرکننده. و به استفاده از فلز پرکننده بررسی نمودند. فلز پرکننده مورد استفاده ER309L بود. نتایج نشان داد خواص اتصال در هر دو حالت قابل قبول می باشد. جانگ و همکاران به بررسی ریزساختار و خواص مکانیکی اتصالات فولادی کم آلیاژی SA508 به فولاد 316 با روش GTAW. به وسیله فلز پرکننده ایکونل 82/182 پرداختند.

 

این نوع اتصال در راکتورهای هسته ای کاربرد دارد. در این بررسی مشاهده گردید خواص مکانیکی و ریزساختار در طول ضخامت جوش متفاوت می باشد. و در بررسی های انجام شده علت ترک های مورد ایجاد در نمونه ها، تنش پسماند تشخیص داده شد. در این راستا پژوهشی مشابه با تحقیق جانگ و همکاران توسط کیم و همکاران انجام شد. با این تفاوت که در این بررسی محققین از عملیات حرارتی پس گرم در دمای 320 درجه سانتی گراد. برای کاهش تنش پسماند استفاده نمودند. که نتایج حاصل رضایت بخش بود. ریزساختار فلز جوش به صورت دندریتی و بررسی سطح شکست، نشان دهنده شکست نرم بود.

 

در مورد روش های مختلف جوشکاری این دو نوع فولاد در قبل بررسی هایی صورت پذیرفت. آریواژگان و همکاران به بررسی خواص اتصال فولادهای AISI 4140 و AISI 304 توسط روش های GTAW، جوشکاری اصطکاکی – اعتشاشی (FSW) و جوشکاری پرتوی الکترونی (EBW) پرداختند. نتایج نشان داد که اتصال به روش EBW دارای بیشترین استحکام کششی. و روش GTAW دارای بیشترین مقاومت به ضربه می باشد.

 

در میان روش های مختلف جوشکاری ذوبی، یکی از پرکاربردترین روش ها در اتصال فلزات غیرمشابه. که در سال های اخیر مورد توجه محققین قرار گرفته است، جوشکاری GTAW می باشد. این روش دارای مزایای فراوان می باشد. که از جمله می توان به تمیز بودن جوش.کنترل نسبی میزان رقت و کم هزینه بودن این روش اشاره کرد. این روش در عین دارا بودن مزایای بسیار. در مقایسه با برخی روش ها نظیر جوشکاری پرتوی الکترونی (EBW). و جوشکاری پرتوی لیزر (LBW) دارای نقاط ضعفی می باشد. که از آن جمله می توان به عمق نفوذ کمتر. ایجاد منطقه HAZ وسیع تر و ایجاد اعوجاج در مقاطع نازک اشاره نمود.

 

در راستای بهبود خواص جوش GTAW، احمدی و ابراهیمی. به بررسی اثر فلاکس فعال در عمق نفوذ جوشکاری GTAW فولاد 316L پرداختند. که نتایج نشان دهنده افزایش عمق نفوذ و افزایش استحکام بود. چاندر و همکاران تأثیر پارامترهای فرایند جوشکاری بر چقرمگی و سختی اتصال فولادهای 4140 AISI و AISI 304. به روش جوشکاری اصطکاکی را بررسی نمودند. پارامترهای اصلی مورد بررسی در این پژوهش نیروی اصطکاکی و نیروی فورج بود. سهم هر یک از پارامترهای مذکور و اهمیت این پارامترها به روش تاگوچی تعیین گردید. که نتایج نشان داد که پارامتر نیروی اصطکاکی به خصوص در میزان چقرمگی اتصال دارای بیشترین اثر می باشد.

 

اوزدمیر و همکاران به بررسی خواص اتصال. از نظر سرعت چرخش در جوشکاری اصطکاکی فولاد AISI 304 به فولاد AISI 4340 پرداختند. جوشکاری اصطکاکی با پنج سرعت مختلف چرخش با استفاده از یک دستگاه انجام شد. مشاهده گردید استحکام کششی با افزایش سرعت چرخش افزایش می یابد.

بنابراین تحقیقات انجام شده توسط نگارندگان مقاله. تاکنون گزارشی در مورد اتصال غیر مشابه فولاد زنگ نزن آستنیتی AISI 316 L. به فولاد کم آلیاژ AISI 4130 در منابع مشاهده نشده. بنابراین در این پروژه به بررسی ریزساختار و خواص مکانیکی اتصال غیرمشابه فولاد زنگ نزن آستنیتی AISI 316 L. به فولاد کم آلیاژ AISI 4130 توسط فرایند GTAW با پرکننده های ER309L و ERNiCr-3 پرداخته شده است. نویسندگان بر این عقیده هستند. که نتایج حاصل از این پژوهش می تواند. در استفاده بهینه از این دو آلیاژ در کاربردهای صنعتی مثمر ثمر واقع گردد.

فولاد 4130

ارتباط با ما :

09121224227

09371901807

02166800251

فکس: 66800546

ارتباط با ما در شبکه های اجتماعی

 

 

https://www.instagram.com/foolad_paytakht.ir اینستاگرام

انواع ورق استیل

 

انواع ورق استیل

در طبقه بندی این محصول، ورق ها بر اساس آلیاژ تقسیم بندی می شوند. استیل ها چند سری دارند. از جمله سری 300 و 400 اما معروف ترین و رایج ترین در بازار سری 300 است. که ضد زنگ می باشد و به انواع مختلفی مانند 304,305,321,316,347 تقسیم می شود. که در بین همه موارد ورق استیل 304 از سایرین پر مصرف تر است.

اما استیل سری 400 بیشتر در زندگی روزمره و وسایل کوچک استفاده می شود. مثلاً استیل 410 در برابر سایش مقاوم است. اما نسبت به خوردگی مقاومت کمی دارد. در استیل 420 می توانیم آن را پولیش کنیم و همین قابلیت باعث می شود که برای کارد و چنگال و قاشق استفاده شود. استیل 430 نیز برای تزئینات و دکوراسیون استفاده می شود. مثلاً برای طراحی های داخلی خودروها و منازل استفاده میشوند. این فلز قابلیت شکل پذیری خوبی دارد. و به خاطر عناصری که در این ورق است قیمت ارزانتری از استیل سری 300 دارد.

 

  • ورق استیل 304
  • استیل 430
  • ورق استیل 420
  • ورق استیل 309
  • استیل 310
  • ورق استیل 316
  • استیل 201
  • ورق استیل رنگی
  • و ورق استیل طرح دار
  • شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
    ارتباط با ما:
    ۰۹۱۲۱۲۲۴۲۲۷
    ۰۹۳۷۱۹۰۱۸۰۷
    تلفن: ۰۲۱۶۶۸۰۰۲۵۱
    فکس: ۶۶۸۰۰۵۴۶

    ارتباط با ما در شبکه های اجتماعی

    https://t.me/foolad_paytakht تلگرام

     

     

    https://www.instagram.com/foolad_paytakht.ir اینستاگرام

A387 – ورق A387- فولاد A387-فولاد ضد زنگ

 

A387 – فولاد A387-صفحه ی فولادی CL2-صفحه فولادی CL1فولاد ضد زنگ – فولاد ضد خوردگی – فولاد حرارتی- ASTM

ASTM A387 CL1- صفحه فولاد CL2- ورق ASTM A387-ورق مخزنی – ورق مخازن تحت فشار- ورق ضد خوردگی

ASTM A387 CL1، CL2 فولاد درجه یک نوع فولاد است که با ترکیب cr، Mo.، Cr-Mo میباشد. که عمدتا برای مخازن تحت فشار بالا و بالا استفاده میگردد. گرید فولاد A387 gr 12 CL1 / A387gr 12 CL2 مطابق با استاندارد ASTM ترکیبات شیمیایی. و خواص مکانیکی صفحات فولادی ASTM A387CL1 / A387CL2.

 

فولاد A387 CL1، CL2 ورق فولاد آلیاژی کروم-مولیبدن را برای دیگهای جوش داده شده. و مخازن تحت فشار برای فعالیت هایی. با درجه حرارت بالا طراحی و تولید میشوند.

این نوع از فولاد با گریدها و مشخصات و نمرات. 2، 12، 11، 22، 22L، 21، 21L، 5، 9 و 91 ساخته. و به بازار تقاضا در بخش صنعت عرضه میشود.

 

این نوع فولاد با روش حرارت متناوب و باز پخت تولید میشود. این نوع فولاد A387 gr11 / 12 CL1 / 2 با آنالیز و انجام پروسه حرارت ایجاد میشود. و مطابق با الزامات و عناصر شیمیایی موجود آن با نام های کربن.، منگنز، فسفر، گوگرد، سیلیکون، کروم، مولیبدن، نیکل، وانادیوم.، کلومیمیم، بور، نیتروژن، آلومینیوم، تیتانیوم ، و زیرکونیوم نوع گرید آن مشخص میگردد.

این نوع فلز برای ارزیابی نوع مقاوم آن تحت آزمایشات تنش قرار میگیرد . و همچنین با مقادیر مورد نیاز هر بخش از صنعت. میزان استحکام کششی و میزان مقاومت و ضخامت آن کنترل میگردد.

ارزیابی ریز ساختار و خواص مکانیکی اتصال غیر همسان فولاد A387-gr.11 و A240-tp-.316

اتصال غیر همسان فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی.- در گذشته بصورت وسیعی در صنایع بکار گرفته شده است. دو فولاد زنگ نزن آستنیتی A240-tp.316 .و فولاد کم آلیاژ فریتی A387-gr.11 توسط جوشکاری قوسی تنگستن. تحت گاز محافظ با دو جریان ثابت و پالسی و با استفاده از دو نوع فلز. پرکننده ی Er309l و Ernic-3 بهم جوش داده شدند.

 

پس از آزمونهای متالوگرافی آزمون تعیین ترکیب شیمیایی، ریز سختی سنجی، کشش و ضربه، مشخص گردید .که بطور کلی، نمونه های جوشکاری شده توسط جریان پالسی – بدلیل گرمای ورودی کمتر. و ایجاد اختلاط بیشتر در حوضچه ی جوش، ضمن کاهش وقوع پدیده های نا مطلوب متالوژیکی. مانند تشکیل منطقه ی کمبود از کربن، منطقه ی انتقالی و منطقه ی مخلوط نشده، بهبود. خصوصیت مکانیکی اتصال را در بر داشتند. نتایج نشان دادند که فلز پر کننده ی پایه نیکل، بدلیل محدود کردن نفوذ کربن.به درون حوضچه ی جوش و کاهش احتمال تشکیل منطقه ی. انتقالی نسبت به فلز پرکننده ی دیگر، مطلوب تر است.

در گذشته اتصال دهی ناهمجنس فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی بطور گسترده ایی در مولدهای بخار، مبدل های حرارتی و تجهیزات لوله کشی در نیروگاه ها، پالایشگاه ها و صنایع پتروشیمی بکار رفته است. بطور مثال : در نیروگاههای با سوخت فسیلی، لوله های مرحله ی پیشگرم دیگهای بخار از نوع و جنس فولادهای کم آلیاژ هستند.

 

و لوله های بخش فوق گرمایش بدلیل دما و فشار کاری بسیار بالاتر، از نوع و جنس. فولاد زنگ نزن انتخاب میشوند. این انتخاب ، سبب صرفه جویی چشمگیر در هزینه ها خواهد شد. این اتصال به آسانی با اغلب روشهای مرسوم به خصوص جوشکاری قوسی تنگستن تحت گاز محافظ gtaw. و جوشکاری قوس الکترود روپوش دار smaw تولید شده است. مورد دیگر برای کاربرد این نوع اتصال، روکش کاری فولادهای کربنی یا کم آلیاژ. با فولادهای زنگ نزن آستنیتی یا آلیاژ پایه نیکل است. با این روش، میتوان مقاومت به خوردگی مخزن های از جنس فولاد کربنی. را با صرف کمترین هزینه تا مقدار قابل توجهی بهبود بخشید.

فرآیند اتصال بین فولاد زنگ نزن آستنیتی و فولاد کم آلیاژ فریتی، چند پدیده ی متالوژیکی قابل توجه به همراه دارد. یکی از پدیده هایی که در هنگام جوشکاری، عملیات حرارتی پس از جوشکاری و در حین قرارگیری در شرایط کاری برای این نوع اتصال رخ میدهد، انتقال کربن از فولاد کم آلیاژ به سمت ناحیه ی جوش میباشد.

 

این پدیده موجب ایجاد یک منطقه ی کمبود از کربن Carbon Depleted Zone,CDZ در ناحیه ی متأثر از حرارت در فولاد کم آلیاژ و در مجاورت مرز ذوب میشود. تحقیقات نشان داده اند که این منطقه ی کمبرد از کربن احتمالاً در معرض ترک خوردگی خزشی قرار خواهد گرفت. پروسه ی انتقال کربن، شامل انحلال کاربیدها در فولاد فریتی و نفوذ کربن بدرون حوضچه ی جوش میگردد. نیروی محرکه برای این پروسه، وجود شیب غلظتی کربن یا شیب اکتیویته ی کربن بین فولاد فریتی کم کروم و فلز جوش آستینی پر کروم است.

 

در اتصال های جوش بین دو فولاد نا همسان آستینی – فریتی، وجود منطقه ی انتقالی یا اختلاط جزیی درون حوضچه ی جوش و در مجاورت فولاد فریتی گزارش شده است. در این منطقه، اختلاط بین فلز جوش و فلز پایه ناقص است. و ترکیت شیمیایی آن شیئ از ترکیب فلز پایه تا فلز جوش است. پهنای منطقه ی انتقالی مطابق با نتایج آزمونهای انجام گرفته، بین 20 الی 100 میکرون و تابع عواملی ماننند ترکیب شیمیایی و میزان حرارت ورودی است.مرزی که این منطقه را از حوضچه جدا میکند. با مرز ذوب موازی است. و بعنوان مرز نوع II شناخته میشود. شناخت این ناحیه، در جوشهای نا همسان فریت به آستنیت بسیار اهمیت دارد. زیرا طبق آنچه پیش تر گفته شد . این منطقه یکی از مناطقی است که در معرض وقوع آسیب های زیادی میباشد.

a387-فولاد ضد خوردگی-فولاد ضد سایش- فولاد ضد زنگ-فولاد زنگ نزن-www.foolad-paytakht.ir

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

تأثیر فلز پرکننده بر خواص اتصال غیر مشابه آلیاژ فولادی 4130 به فولاد زنگ نزن 316L پارت دوم

 

مواد و روش تحقیق

مواد مصرفی

در این پژوهش از ورق فولاد کم آلیاژ AISI 4130 و فولاد زنگ نزن آستنیتی AISI استفاده شد. آنالیز کوانتومتری جهت تعیین دقیق ترکیب شیمیایی ورق های خریداری شده انجام گردید. ترکیب شیمیایی فلزات پایه در جدول 1 ارائه شده است. جهت اتصال فلزات پایه از دو فلز پرکننده فولاد زنگ نزن ER309L و اینکونل ERNiCr-3 استفاده شد. در تمامی موارد از سیم جوش هایی با قطر 2/4 میلی متر جهت پاس ریشه. و در ادامه جهت رونشانی پاس بعدی استفاده شد.

به منظور ارائه دقیق ترکیب شیمیایی سیم جوش های به کار گرفته شده. از اطلاعات درج شده توسط کارخانه سازنده استفاده شد. در انتخاب فلزات پرکننده در این پژوهش علاوه بر ترکیب شیمیایی. پارامترهای دیگری مانند خواص مکانیکی حاصله، پایداری حرارتی، مقاومت به خوردگی، ضریب انبساط حرارتی. در دسترس بودن و هزینه ها مد نظر قرار گرفت. بر همین اساس از استانداردهای AWS , AWS A5/9 A5/14 و مشخصات ارائه شده از طرف تولید کنندگان استفاده گردید.

فولاد 4130

آماده سازی نمونه ها و طراحی اتصال

در این پژوههش ده ورق از جنس فولاد زنگ نزن آستنیتی AISI 316L. و فولاد AISI 4130 با ابعاد 6×70×300 میلی متر. به عنوان فلزات پایه تهیه شد و بر اساس استاندارد AWS D1/1 به صورت جناغی یک طرفه لبه سازی گردید. زاویه لبه هر ورق در ناحیه شیار جوش 25 درجه. و در مجموع 50 درجه مطابق شکل (1) در نظر گرفته شد. عملیات لبه سازی توسط ماشین فرز و با کیفیت بالا انجام گردید. سپس مراحل سمباده زنی، چربی زدایی و تمیزکاری قطعات جهت انجام فرایند جوشکاری انجام شد.

جوشکاری نمونه ها

اتصال ورق ها با استفاده از سیم جوش های ER309L. و ERNiCr-3 به قطر 2/4 میلی متر و به روش GTAW. توسط دستگاه با مدل ESAB DTA 300 بدون پیش گرم کردن نمونه ها. و با قطبیت DCEN به صورت 1G انجام گردید. الکترود مصرف نشدنی مورد استفاده، الکترود تنگستنی حاوی دو درصد توریم

فولاد 4130

به قطر 2/4 میلی متر بود. گاز آرگون با خلوص 99/9 درصد با فشار 4 الی 5 بار به عنوان گاز محافظ استفاده شد. دمای بین پاسی 100 درجه سانتی گراد در نظر گرفته شد. تا تنش های پسماند ناشی از انقباض و سرد شدن فلز جوش به حداقل مقدار ممکن برسد. در هر پاس مقادیر شدت جریان، ولتاژ و سرعت جوشکاری اندازه گیری و کنترل شد (جدول 2).

بررسی ریزساختار

به منظور مطالعه و بررسی ریزساختار مناطق مختلف در فلزات پایه. فلز جوش و منطقه متأثر از حرارت (HAZ)، و همچنین تحولات ریزساختاری. از روش متالوگرافی توسط میکروسکوپ نوری با بزرگ نمایی مختلف استفاده گردید. بدین صورت که ابتدا نمونه ها توسط اره نواری در ابعاد 15× 30 میلی متر بریده شد.

سپس نمونه ها توسط دستگاه های نیمه اتوماتیک سنباده و پولیش، طبق استاندارد ASTM E3-11 آماده سازی گردید. پس از انجام فرایند آماده سازی، عملیات میکرو اچ نمونه ها. توسط محلول های اچ نایتال (1الی 5 میلی لیتر نیتریک اسید و 95-99 میلی لیتر اتیل الکل). و گلیسرژیا (سه بخش گلیسرول، 5-2 بخش کلرید اسید. یک بخش استیک اسید) و محلول اچ رنگی براها. (5 گرم تیو سدیم سولفید + 3 گرم پتاسیم متابیو سولفید+ 1000 میلی لیتر آب). طبق استاندارد 2015- ASTM E407 انجام شد.

ارزیابی خواص مکانیکی

جهت بررسی خواص مکانیکی اتصال، برای تعیین استحکام کششی جوش از آزمون کشش طبق استاندارد ASTM E8. توسط دستگاه کشش مدل 4486-INSTRON استفاده شد. مشخصات نمونه برای آزمون کشش طبق استاندارد در شکل (2) نشان داده شده است. جهت تعیین میزان انرژی ضربه از آزمون ضربه شارپی استفاده شد. بدین صورت که از فلز جوش، نمونه هایی با ابعاد 6×10

جهت بررسی خواص مکانیکی اتصال، برای تعیین استحکام کششی جوش از آزمون کشش طبق استاندارد ASTM E8. توسط دستگاه کشش مدل 4486-INSTRON استفاده شد. مشخصات نمونه برای آزمون کشش طبق استاندارد در شکل (2) نشان داده شده است. جهت تعیین میزان انرژی ضربه از آزمون ضربه شارپی استفاده شد. بدین صورت که از فلز جوش، نمونه هایی با ابعاد 6×10×55 میلی متر. به گونه ای که نقطه اتصال در مرکز نمونه قرار گیرد تهیه شد.

 

مطابق شکل (3) شیاری به عمق یک میلی متر. و با زاویه 45 درجه بر روی نمونه در فلز جوش ایجاد شد. این آزمون توسط دستگاه سنتام مدل SIT 300 در دمای محیط انجام شد. جهت انجام آزمون های کشش و ضربه، از هر قطعه 3 نمونه برای هر آزمون طبق مشخصات بالا تهیه گردید. همچنین ریزسختی سنجی ویکرز بر روی نمونه ها در راستای پهنای جوش، در سطح مقطع برش عرضی نمونه ها. مطابق با استاندارد ASTM E-92، انجام شد. تصاویر سطح مقطع شکست نمونه های آزمون کشش و ضربه. به وسیله میکروسکوپ الکترونی روبشی از نوع VARIABLE PRESSURE SEM – (XMU & LMU) مورد بررسی قرار گرفت.

نتایج بحث

ریزساختار فلزات پایه

شکل (4) تصویر میکروسکوپی نوری از ریز ساختار فولاد 4130 را نشان می دهد. ساختار شامل بینیت، فریت و نواحی پرلیت می باشد. این آلیاژ معمولاً در حالت آنیل شده یا تمپر شده جوشکاری می گردد. مگر اینکه هدف تعمیر قطعه باشد که در این حالت آنیل یا تمپر قبل از جوشکاری عملی نیست. با انجام عملیات آنیل علاوه بر یکنواختی در ترکیب شیمیایی. در اثر وقوع فرایند تبلور مجدد، ساختاری با دانه های هم محور ایجاد می شود. و با افزایش زمان آنیل، دانه ها فرصت رشد یافته. و در نهایت ساختاری شامل دانه های هم محور نسبتاً بزرگ به وجود می آید.

 

تصویر میکروسکوپی نوری از ریزساختار فولاد زنگ نزن آستنیتی 316L در شکل (5) آورده شده است. ریزساختار دارای زمینه آستنیتی بوده و از دانه های هم محور تشکیل شده. و همچنین مرزهای دوقولویی آنیل در سرتاسر ساختار به چشم می خورند. چنین ساختاری نتیجه فرایند آنیل پس از عملیات نورد است. این عملیات به منظور بهبود خواص خوردگی و شکل پذیری آلیاژ انجام می گردد.

همچنین طی فرایند آنیل، اکثر رسوبات ایجاد شده. در فرایند تولید فولاد که طی عملیات نورد دچار تغییر شکل شده اند حذف می گردند. در شکل (5) وجود رشته فریت دلتا کاملاً مشخص می باشد. هرچند که مقدار این فاز در ساختار خیلی زیاد نیست. وجود فریت دلتا روند به وجود آمدن فاز سیگما در آلیاژ را، پس از قرار گرفتن طولانی مدت. و محدوده دمایی 600 تا 900 درجه سانتی گراد تسریع می کند. وجود فاز ترد سیگما باعث کاهش انعطاف پذیری و چقرمگی آلیاژ خواهد شد.

میزان رقت فلز جوش

جهت تعیین میزان رقت ابتدا از هر نقطه نمونه ای با مشخصات یک نمونه متالوگرافی تهیه. و سپس منطقه جوش ماکرو اچ گردید. سپس مساحت منطقه جوش محاسبه شد .و با مقایسه این مساحت و مساحت سطح مقطع فرضی لبه سازی انجام شده میزان رقت محاسبه گردید. میزان رقت در هر دو نمونه به طور تقریبی شامل 60 الی 65 درصد فلز پرکننده. و مابقی فلز پایه می باشد.

در نمونه جوشکاری شده توسط ERNiCr-3 به علت میزان بالای نیکل در فلز پرکننده و همچنین میزان قابل توجه این عنصر در فلز پایه 316 مطابق جدول (1)، این میزان رقت اثری در تغییر ساختار قابل پیش بینی جوش ندارد. در مورد نمونه جوش داده شده توسط ER309L، با در نظر گرفتن میزان عناصر آلیاژی در فلزات پایه. به خصوص فولاد 316 مطابق جدول (1) و طبق محاسبات میزان رقت عناصر، میزان عناصر به گونه ای است. که طبق نمودار شیفلر، جوش در همان محدوده فازی ER309L قرار دارد.

ریزساختار فلز جوش

یکی از مواد پرکننده مورد استفاده برای اتصال غیرمشابه در این تحقیق اینکونل 82 (ERNiCr-3) می باشد. ساختار دانه بندی فلز جوش مربوط به این فلز پرکننده در شکل (6) مشخص است. با توجه به شکل (6)، ریزساختار مطابق انتظار کاملاً آستنیتی بوده. و از دانه های تقریباً هم محور متشکل است. درون دانه ها، ساختار دندریتی – سلولی ساختار غالب می باشد. و بازوهای دندریت های هم محور نیز در برخی از دانه ها وجود دارند. جهت گیری رشد دندریت ها در هر دانه متفاوت است. و در واقع یک نوع رشد رقابتی در ساختار قابل مشاهده است. در شکل (6) رسوباتی نمایان هستند. که پس از انجام ارزیابی به روش طیف سنجی تفریق انرژی EDs مطابق شکل (7). این رسوبات غنی از نیوبیوم بودند.

بر اساس گزارش های مورد انتشار، تشکیل رسوبات غنی از نیوبیوم به صورت NbC در جوشکاری. با این فلز پرکننده گزارش گردید. ضریب جدایش نیوبیوم در آلیاژهای پایه نیکل کمتر از یک بوده. و در نتیجه این عنصر تمایل زیادی به جدایش در مناطق بین دندریتی دارد. علاوه بر این حضور سایر عناصر آلیاژی، قابلیت انحلال این عنصر در نیکل را کاهش می دهد.

 

فلز پرکننده دیگری که در این تحقیق مورد استفاده قرار گرفت فلز پرکننده ER309L بود. به طور کلی نوع انجماد در فولادهای زنگ نزن آستنیتی. به عواملی همچون ترکیب شیمیایی و فاکتورهای سینتیکی. مانند سرعت سرد شدن بستگی دارد. مهمترین عامل، مقدار کروم و نیکل معادل و نسبت Creq/Nieq در ترکیب شیمیایی است. همچنین با توجه به نمودار شیفلر که برای فرایندهای غیرتعادلی جوشکاری طراحی گردید.

ساختار مورد حاصل آستنیتی-فریتی خواهد بود. مطابق شکل (8) ترکیب این فلز جوش به نحوی است. که در بخش غنی از نیکل و و در سمت راست مثلث یوتکتیک سه فازی قرار می گیرد. و بنابراین فاز اولیه در انجماد آستنیت می باشد. حالت انجماد در این شرایط شامل فریت در بین دندریت ها. یا سلول های آستنیت و یا به صورت آستنیت اولیه همراه با فریت به عنوان فاز دوم (AF) خواهد بود. در ساختار مورد حاصل مطابق شکل (9)، فریت دلتا نمایان است.

 

در منطقه ای در مرکز حوضچه مذاب نرخ سرد شدن به اندازه ای پایین می باشد. که زمان کافی برای جدایش عناصر پایدار کننده فریت، ایجاد شده و در مناطق بین دندریتی فریت تشکیل می شود. در شکل (9) سلول ها و دندریت های آستنیت به رنگ روشن و فریت دلتا. به عنوان فاز دوم با رنگ تیره در ساختار مشاهده می شود.

ساختار فلز جوش پایه نیکلی عمدتاً به صورت دندریتی. همراه با دندریت های ثانویه قابل مشاهده می باشد. در صورتی که در فلز جوش 309L دندریت های ثانویه به سختی نمایان می گردد. و در قسمت هایی از آن، ساختار سلولی وجود دارد. تفاوت در میزان تحت انجماد در جبهه انجماد به دلیل وجود عناصر آلیاژی مختلف به ویژه عناصر آلیاژی. نظیر مولیبدن و نیوبیوم می باشد. که ضریب توزیع تعادلی انجماد آنها به اندازه کافی کوچک تر از یک است.

این عامل سبب ایجاد ریزساختار دندریتی می شود. و فازهای ثانویه در مناطق بین دندریتی و بین دانه ها شکل می گیرد. علاوه بر این، اندازه ریزساختارها نیز با یکدیگر یکسان نبوده. که این پارامتر بر روی خواص جوش مانند استحکام کششی، چقرمگی و حساسیت به ترک انجمادی تأثیرگذار می باشد.

بررسی فصل مشترک جوش

در شکل (10) و (11) فصل مشترک مربوط به نمونه مورد جوشکاری توسط ER309L مشخص است. در فصل مشترک سمت AISI 4130 همان گونه که در شکل (10) نمایان است. رشد به دو صورت مسطح (رونشینی) و هم غیر مسطح قابل مشاهده می باشد. رشد مسطح به علت شیب حرارتی بالا در حوضچه جوش ایجاد می شود. در ادامه جوانه زنی و رشد به صورت سلولی و ستونی در داخل ناحیه که ذوب است نمایان است. که این ساختارها تابع شرایط انتقال حرارت و ترکیب شیمیایی می باشد. در فصل مشترک 316 (شکل (11)) تمرکز فریت در فصل مشترک به خوبی قابل مشاهده است. رشد به صورت غیر مسطح بوده و دانه ها به صورت ستونی در فصل مشترک رشد نموده اند. همچنین رشد دانه های آستنیت در HAZ قابل مشاهده است.

 

فولاد 4130

 

فصل مشترک نمونه مورد جوشکاری توسط ERNiCr-3 در دو شکل (12) و (13) آورده شده است. در فصل مشترک سمت AISI 4130 همان گونه که در شکل (12) مشخص است. رشد به صورت مسطح (رونشینی) قابل مشاهده می باشد. جوانه زنی و رشد به صورت سلولی و ستونی در داخل ناحیه که ذوب می شود مشخص می گردد. و افزایش اندازه ستون ها و سلول ها در این نمونه نسبت به نمونه مورد جوشکاری. توسط ER309L مشخص می گردد. در فصل مشترک 316 (شکل (13)) تمرکز فریت در فصل مشترک به خوبی قابل مشاهده است. علاوه بر آن یک ناحیه ترکیب نمی شود در فصل مشترک مشخص می گردد. که به احتمال زیاد به علت تفاوت زیاد در ترکیب شیمیایی بین فاز پایه و پرکننده ایجاد می شود. رشد به صورت غیر مسطح است و دانه ها به صورت سلولی در ناحیه که ذوب است رشد کردند.

نتایج آزمون کشش

بررسی نمونه های آزمایش کشش (شکل (14)) نشان داد که نمونه مورد جوشکاری با فلز پرکننده ER309L. از فلز پایه 316L دچار شکست گردید. بررسی نتایج موجود در جدول 3 نیز نشان دهنده نقطه تسلیم در محدوده 350 مگاپاسکال. و استحکام نهایی حدود 630 مگاپاسکال می باشد. نمونه مورد جوشکاری با فلز پرکننده ERNiCr-3 مطابق شکل (14) از محل جوش دچار شکست گردید. بررسی نتایج آزمون کشش در جدول 3 نشان دهنده نقطه تسلیم در حدود 370 مگاپاسکال. و استحکام نهایی در حدود 610 مگاپاسکال می باشد. این بدان معناست که ضعیف ترین مناطق در قطعات مورد جوشکاری. به ترتیب فلز پایه 316L و فلز پرکننده ERNiCr-3 می باشد. محل شکست در نمونه های مورد جوشکاری به استحکام اجزای مختلف نمونه در اتصال بستگی خواهد داشت.

 

فولاد 4130

به طور معمول فولادهای زنگ نزن آستنیتتی در شرایط کار سرد، نورد گرم و آنیل می شود جوشکاری می شوند. در اکثر موارد پس از عملیات جوشکاری، مقداری نرم شدگی. در منطقه متأثر از حرارت (HAZ) این نوع فولادها رخ می دهد. که به تبلور مجدد و رشد دانه در منطقه متأثر از حرارت (HAZ) مربوط می باشد. این تغییرات در شکل های (11) و (13) قابل مشاهده است. در نتیجه زمانی که آزمون کشش بر روی نمونه های مورد جوشکاری. با فلز یا فلزات پایه از جنس فولاد زنگ نزن آستنیتی انجام میشود. احتمال شکست نمونه در منطقه HAZ افزایش می یابد.

 

در پژوهش حاضر حضور فریت در منطقه HAZ. و در نزدیکی مرز ذوب هر دو نمونه مطابق شکل های (11) و (13) باعث افزایش استحکام گردیده. همچنین و یا به عبارت دیگر فریت به عنوان یک عامل استحکام دهنده ثانویه عمل نموده. و مقدار استحکام منطقه HAZ را افزایش می دهد و مانع از شدت نمونه ها در منطقه HAZ می گردد. این در حالی است که در مواردی که افزایش اندازه دانه های آستنیت بدون حضور فریت رخ می دهد. احتمال شکست در منطقه HAZ زیاد می باشد.

نتایج آزمون کشش نشان می دهد که از نظر خواص مکانیکی انتخاب فلز پر کننده ER309L. برای این اتصال به علت وجود فریت در ساختار فلز جوش مناسب تر بوده و دارای استحکام کافی می باشد. و اتصال مناسبی ایجاد می نماید. با بررسی دیتاها حاصل از آزمون کشش و انرژی شکست در جدول 3 می توان مشاهده نمود. چقرمگی شکست در نمونه مورد جوشکاری توسط فلز پرکننده ER309L. به میزان قابل توجهی بیشتر از نمونه مورد جوشکاری. توسط فلز پرکننده ERNiCr-3 می باشد. این مسأله را می توان به حضور فریت در ساختار جوش فلز پرکننده ER309L. و ساختار انجمادی نسبتاً متفاوت آن نسبت داد.

نتایج آزمون ضربه

در جدول 3 نتایج آزمون ضربه شارپی برای فلز جوش گزارش گردید. و نتایج انرژی شکست بالایی به میزان 105 ژول را برای فلز پرکننده ER309L نشان می دهد. این میزان انرژی ضربه نسبت به نمونه مورد جوشکاری. با فلز پرکننده ERNiCr-3 در حدود 40 ژول بالاتر می باشد.

تصاویر میکروسکوپی الکترونی روبشی مربوط به سطح شکست نمونه ضربه ER309L مورد بررسی قرار گرفت. و در شکل (15) ارائه گردید. در این شکل، خطوط سیلان کاملاً مشخص است و حالت متداوم دارد. مشاهده دیمپل ها و حفرات قیفی شکل و کروی در سطح شکست در شکل (15-الف) نشان می دهد. که نوع شکست در نمونه مورد جوشکاری با فلز پرکننده ER309L کاملاً نرم می باشد. در نمونه مورد جوشکاری با فلز پر کننده ERNiCr-3 مطابق شکل (15-ب) علاوه بر دیمپل ها صفحات تورق. در نقاطی از نمونه قابل مشاهده می گردد. که نشان دهنده شکست نیمه ترد است.

فولاد 4130

آزمون میکروسختی سنجی

پروفیل سختی معیار مناسبی برای پیش بینی ریزساختار متشکل می باشد. شکل (16) پروفیل سختی افقی از فلز پایه فولاد AISI 316L. تا فلز پایه فولاد AISI 4130 را نشان می دهد. بررسی نمودار سختی در شکل (16) نشان می دهد. دو نمونه در سمت فولاد 316، رفتار کاملاً متفاوتی از هم در منطقه جوش از خود نشان می دهند. سیم جوش ER309L باعث افزایش سختی و سیم جوش ERNiCr-3 باعث کاهش سختی میشود. علت این موضوع را می توان با عنایت به تصاویر متالوگرافی شکل (11) و (13). به تفاوت میزان فریت موجود در نمونه ها و ساختار آنها نسبت داد.

 

در سمت فولاد AISI 4130 رفتار یکسانی بر دو نمونه حاکم می باشد. و در این سمت یک روند افزایش سختی از سمت فلز پایه به سمت منطقه HAZ. در هر دو فلز پرکننده مشاهده می گردد. که این روند با عنایت به تغییر ساختار از پرلیت و بینیت به مارتنزیت که تمپر است. و بینیت در منطقه HAZ شکل (17) و (18) قابل انتظار می باشد.

در ادامه در منطقه جوش نسبت به فلز پایه 4130. و منطقه HAZ مربوط به آن کاهش سختی مشاهده می شود. که این موضوع به دیل ایجاد ساختار با زمینه آستنیتی می باشد. بازه تغییرات سختی در نمونه بین 150 تا 480 ویکرز می باشد. حداکثر میزان سختی در هر دو نمونه در منطقه HAZ فولاد AISI 4130 مشاهده می شود. که این مسأله به علت وجود مارتنزیت که تمپر است در این منطقه می باشد (شکل 17 و 18).

نتیجه گیری

نتایج حاصل از این پژوهش را می توان در بخش های زیر خلاصه نمود:

1-جوش حاصل از فلز پرکننده اینکونل 82 دارای ریزساختار کاملاً آستنیتی با دانه هایی هم محور بود. و ساختار دندریتی در آن قابل مشاهده بود.

2- رشد سلولی و دندریتی در فلز جوش ER309L همراه با فریت در ساختار مشاهده شد. ریزساختار فلز جوش به صورت زمینه آستنیتی همراه با فریت دلتا در مرز دانه های آستنیت بود.

3- آزمون ضربه نشان دهنده وقوع شکست نرم درتمامی نمونه ها بود. مقدار انرژی شکست اتصالات در فلز پر کننده 309L به میزان قابل ملاحضه ای بالاتر از اتصال با ERNiCr-3 بود. که این موضوع به دلیل وجود فریت در ساختار فلز پرکننده 309L می باشد.

4- نتایج آزمون کشش نشان داد که انتخاب فلز پر کننده ER309L برای این اتصال به علت وجود فریت بیشتر. در ساختار فلز جوش مناسب بوده و دارای استحکام کافی می باشد. چقرمگی شکست در نمونه جوش می دهند توسط فلز پرکننده ER309L. به میزان قابل توجهی بیشتر از نمونه جوش می دهند توسط فلز پر کننده ERNiCr-3 بود.

5- حداکثر میزان سختی در هر دو نمونه در منطقه HAZ فولاد AISI 4130 مشاهده شد. که این مسأله به علت وجود مارتنزیت که تمپر است. و بینیت دراین منطقه می باشد.

دانشگاه فنی و مهندی-دانشگاه اراک

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

 

فولاد ضد زنگ-سینتیک رشد لایه آستنیت در سطح فولاد زنگ نزن فریتی FE-23CR-2/4MO

 

فولاد ضد زنگ-سینتیک رشد لایه آستنیت در سطح فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo حین عملیات نیتروژن دهی محلولی

فولاد ضد زنگ-سینتیک رشد لایه آستنیت در سطح فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo

در این تحقیق سینتیک رشد لایه آستنیت در سطح فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo. حین عملیات نیتروژن دهی محلولی و تأثیر نیتروژن بر روی ریزساختار و سختی فولاد مورد مطالعه قرار گرفته است. تسمه هایی به ضخامت 2 میلی متر از این فولاد در دمای 1200 درجه سانتی گراد. تحت اتمسفر گاز نیتروژن با فشار 0/25 مگاپاسکال. به مدت زمان های 2،3،6،9و 12 ساعت نیتروژن دهی شدند. ریزساختار، ضخامت لایه آستنیتی و سختی نمونه های نیتروژن دهی شده با استفاده از میکروسکوپ نوری. تفرق پرتو ایکس (XRD) و ریزسختی سنجی مطالعه شدند.

نتایج نشان داد که با انجام عملیات نیتروژن دهی، نیتروژن به صورت مرزدانه ای و شبکه ای نفوذ کرده. و باعث استحاله فازی فریت به آستنیت میشود. سینتیک استحاله فریت به آستنیت با نفوذ نیتروژن با ضریب نفوذ متوسط 6/54 × 10 به توان منفی 5 میلی متر مربع بر ثانیه کنترل می شود. ضخامت لایه آستنیتی تشکیل شده متناسب با ریشه دوم زمان نیتروژن دهی افزایش می یابد. و پس از 12 ساعت نیتروژن دهی، کل ضخامت نمونه فریتی با سختی 262HV0/1 به آستنیت. با سختی 240HV0/1 تبدیل می شود.

فولاد ضد زنگ

تحقیقات نشان داده است در بین عناصر آلیاژی، نیتروژن به عنوان آستنیت زای قوی عمل کرده. و می تواند بعنوان بهترین جایگزین برای عنصر گران قیمت نیکل در ترکیب فولادهای زنگ نزن به کار گرفته شود. امروزه نیتروژن دهی محلولی بعنوان روش جدیدی برای اضافه کردن نیتروژن به فولادهای زنگ نزن شناخته می شود. نیتروژن دهی با این عملیات به طور مؤثری باعث بهبود خواص مکانیکی. مقاومت به خوردگی و سایش فولادهای زنگ نزن آستنیتی، مارتنزیتی، دو فازی و فریتی می شود.

نیتروژن دهی محلولی نوعی عملیات ترموشیمیایی شامل آنیل کردن فولادهای زنگ نزن. در اتمسفر گاز نیتروژن (N2) در محدوده دمایی 1200 – 1000 درجه سانتی گراد است. مولکول های گاز N2 به علت وجود پیوند سه گانه بین اتم های آن. مقاومت بالایی در برابر تجزیه حرارتی تا دمایی حدود 3600 درجه سانتی گراد از خود نشان می دهند. اما در حضور سطح فلزی در دماهای بالاتر از 1000 درجه سانتی گراد. این مولکول ها با انجام واکنش N2=2N به اتم های N تجزیه شده. و امکان نیتروژن دهی را فراهم می کنند. در طی فرآیند، نیتروژن اتمی حاصل از تجزیه N2. جذب سطح فولاد شده و به ناحیه زیر سطح نفوذ می کند.

در صورت جذب نیتروژن کافی، ساختار فازی سطح فولاد فریتی به آستنیت تغییر می یابد. و موقع سرد کردن بسته به ترکیب شیمیایی و پایداری آستنیت حاصل، ریزساختار آن می تواند. در دمای محیط به صورت آستنیتی باقی مانده یا به مارتنزیت تبدیل شود. در برخی موارد جذب نیتروژن در مقادیری بیشتر از حد حلالیت باعث تشکیل رسوبات نیتریدی در سطح می شود.

فولاد ضد زنگ

با توجه به نفوذی بودن عملیات نیتروژن دهی، ضخامت لایه نیتریدی تشکیل شده. در اثر نفوذ نیتروژن به متغیرهای فرآیند نظیر فشار جزئی گاز نیتروژن، دما و زمان نیتروژن دهی بستگی دارد. بنابراین با کنترل این متغیرها می توان به ضخامت مطلوب دست یافت. در تحقیقی که بر روی نیتروژن دهی محلولی فولاد زنگ نزن فریتی-مارتنزیتی صورت گرفته. نشان داده شده است که ضخامت لایه مارتنزیتی تشکل شده بر روی این فولاد متناسب با دما. ریشه دوم زمان نیتروژن دهی و لگاریتم فشار جزئی گاز نیتروژن است.

ولی تا کنون رابطه ای بین ضخامت لایه آستنیتی تشکیل شده بر روی فولادهای زنگ نزن فریتی. با متغیرهای عملیات نیتروژن دهی محلولی گزارش نشده است. در بیشتر تحقیقات انجام گرفته بر روی فولادهای زنگ نزن فریتی به بررسی تغییرات ریزساختار. خواص مکانیکی و مقاومت به خوردگی فولاد با تغییر متغیرهای عملیات پرداخته شده است.

فولاد ضد زنگ

فولادهای کروم و مولیبدن دار فریتی با ترکیب (Fe-(18- 25 Cr-(1-2) Mo در کاربردهایی که نیاز به مقاومت بالا در برابر خوردگی و پوسته ای شدن در دماهای بالا دارند، به کار گرفته می شوند. تسمه های نازکی از این فولادها را می توان با عملیات نیتروژن دهی محلولی به تسمه های آستنیتی تبدیل کرد. به منظور انجام عملیات نیتروژن دهی به صورت بهینه. و اجتناب از اثرات منفی قرار گیری طولانی مدت در دماهای بالا. دانستن زمان آستنیته شدن کامل ضروری است. بر این اساس، هدف از انجام تحقیق حاضر، مطالعه سینتیک استحاله فازی فریت به آستنیت. و تغییرات ضخامت و سختی لایه آستنیتی تشکل شده بر روی تسمه های فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo. با ضخامت 2 میلی متر با تغییر زمان نیتروژن دهی. و همچنین حصول زمانه بهینه آستنیته شدن کامل تسمه فولادی است.

مواد و روش تحقیق

در این تحقیق از تسمه های فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo با ضخامت 2 میلی متر استفاده شد. که ترکیب شیمیایی دقیق آن (بر حسب درصد وزنی) در جدول 1 ارائه شده است. ابتدا عملیات فولادسازی در کوره ذوب القایی تحت اتمسفر گاز آزگون انجام گرفت. سپس شمش فولادی به دست آمده از ذوب القایی. به منظور حصول ترکیب شیمیایی یکنواخت و حذف ناخالصی ها تحت عملیات ذوب مجدد تحت سرباره الکتریکی قرار گرفت. در نهایت شمش تصفیه شده حاصل تحت عملیات همگن سازی در دمای 1100 درجه سانتی گراد. به مدت زمان 48 ساعت قرار گرفت.

 

به منظور تولید تسمه هایی با ضخامت 2 میلی متر، ابتدا ضخامت شمش همگن شده با انجام عملیات نورد داغ. در دمای 1100 درجه سانتی گراد طی 5 پاس به 10 میلی متر کاهش یافت. برای جلوگیری از درشت شدن بیش از حد دانه های فریت در حین عملیات نیتروژن دهی محلولی. در ادامه عملیات نورد گرم در دمای پایین انجام شد. با انجام عملیات نورد گرم در دمای 500 درجه سانتی گراد. طی سه پاس ضخامت تسمه از 10 میلی متر به 3 میلی متر کاهش یافت. و سپس تحت عملیات آنیل در دمای 1000 درجه سانتی گراد به مدت زمان یک ساعت قرار گرفت. لازم به ذکر است به علت افزایش سختی فولاد فریتی در عملیات نورد گرم. امکان ادامه عملیات نورد تا ضخامت 2 میلی متر فراهم نشد.

فولاد ضد زنگ

بنابراین برای به ابعاد رساندن نمونه ها به منظور انجام عملیات نیتروژن دهی. نمونه هایی با ضخامت 2 میلی متر از تسمه فولادی برش داده شدند. و سطوح آنها با استفاده از کاغذ سنباده تا شماره 600 صیقلی شدند. قبل از عملیات نیتروژن دهی. نمونه ها در اتانول به مدت 15 دقیقه با استفاده از دستگاه آلتراسونیک چربی زدایی شدند. سپس عملیات نیتروژن دهی محلولی در دمای 1200 درجه سانتی گراد تحت اتمسفر گاز N2 (با خلوص بالا، 99/9995). یا فشار 0/25 مگاپاسکال به مدت زمان های 2،3،6،9 و 12 ساعت انجام شد. پس از اتمام نیتروژن دهی جهت جلوگیری از تشکیل رسوب های نیترید کروم در حین سرد کردن. نمونه ها در آب کوئنچ شدند.

بررسی ریزساختار نمونه ها با استفاده از میکروسکوپ نوری مدل Olympus PMG3 انجام شد. برای این منظور پس از سنباده زنی و پولیش نمونه ها، سطح مقطع عرضی نمونه R با استفاده از محلول اچ اصلاح شده آکوا (aqua) (50 میلی لیتر کلریک اسید، 25 میلی لیتر نیتریک اسید، 25 میلی لیتر آب مقطر) و سطح مقطع عرضی نمونه های نیتروژن دهی شده با استفاده از محلول اچ baraha – (یک گرم پیروسولفیت پتاسیم، بیست میلی لیتر کلرید اسید، صد میلی لیتر اب مقطر) اچ شدند. اندازه دانه فریت و ضخامت لایه نیتریدی از روی تصاویر متالوگرافی. با استفاده از نرم افزار آنالیزگر تصویر کلمکس تعیین شد.

ساختار فازی سطح نمونه ها از طریق آنالیز الگوهای پراش پرتو ایکس ثبت شده. با دستگاه پراش سنج پرتو ایکس مدل Bruker advanced D8 با تابش پرتو Kα مس با طول موج 1/5406 آنگستروم. تحت ولتاژ 40 کیلوولت و جریان 40 میلی آمپر تعیین شد. سختی سطح مقطع عرضی نمونه ها توسط دستگاه ریزسختی سنج مدل MDPEL-M400GL از نوع فرو رونده ویکرز. با بار اعمالی 100 گرم و مدت زمان توقف 15 ثانیه اندازه گیری شد. اعداد سختی گزارش شده میانگین سه بار اندازه گیری است.

نتایج و بحث

ارزیابی الگوهای پراش اشعه ایکس

الگوهای پراش اشعه ایکس به دست آمده از سطح فولاد (عمود بر راستای نفوذ نیتروژن). مورد مطالعه قبل و پس از نیتروژن دهی محلولی به مدت زمان 2،6،12 ساعت در شکل (1) ارائه شده است. این الگوها نشان می دهند که سطح فولاد قبل از نیتروژن دهی (نمونه R). از فاز فریت و پس از نیتروژن دهی (نمونه های SN-2H،SN-6H،SN-12H) از فاز آستنیت تشکیل یافته است. این نتیجه وقوع استحاله فریت به آستنیت. در سطح نمونه ها با جذب نیتروژن در حین نیتروژن دهی محلولی را اثبات می کند. همچنین با افزایش زمان نیتروژن دهی شدت نسبی پیک های تفرق آستنیت غنی از نیتروژن تغییر کرده است. که حاکی از تغییرات جهت مرجع با رشد لایه آستنیتی است.

ریزساختار نمونه ها در سطح مقطع عرضی

سینتیک رشد لایه آستنیتی در حین عملیات نیتروژن دهی محلولی

انحلال نیتروژن در فولاد در حین عملیات نیتروژن دهی را می توان شامل مراحل زیر دانست:

4) انتقال اتم های نیتروژن حل شده از سطح به عمق از طریق نفوذ اتمی.

از آنجایی که مراحل فوق باید به طور پی در پی اتفاق بیفتد. لذا سرعت کل تحول نمی تواند از سرعت کندترین مرحله بیشتر باشد. بنابراین چنانچه یکی از مراحل کندتر از سایر مراحل باشد، کنترل کننده سرعت کل تحول خواهد بود.

در اغلب فرآیندهای متالورژیکی سرعت واکنش های شیمیایی در دماهای بالا، بیشتر از سرعت نفوذ در فاز جامد است. لذا با توجه به انجام عملیات نیتروژن دهی در دمای بالا (1200 درجه سانتی گراد). می توان انتظار داشت که سرعت مراحل 1 تا 3 به ترتیب شامل جذب فیزیکی. شیمیایی و انحلال بالا بوده نمی توانند کنترل کننده سرعت فرآیند نیتروژن دهی محلولی باشند. بنابراین سرعت کل تحول برابر سرعت کندترین مرحله که همان مرحله 4 است، خواهد بود. عوامل مختلفی نظیر نوع فرآیند نیتروژن دهی (نیتروژن دهی گازی یا پلاسمایی)، غلظت تعادلی نیتروژن. دما و زمان عملیات نیتروژن دهی بر مقدار نفوذ نیتروژن و در نتیجه سینتیک رشد لایه نیتریدی تأثیر می گذارند.

تصاویر میکروسکوپی نوری از سطح مقطع عرضی فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo. قبل و پس از نیتروژن دهی محلولی به مدت زمان های. 9،6،3،2 و 12 ساعت در شکل (2) ارائه شده است. در این شکل دیده می شود که ریزساختار. فولاد قبل از نیتروژن دهی شامل دانه های هم محور فریت با اندازه دانه متوسط 90 میکرومتر است (شکل 2-الف). با انجام عملیات نیتروژن دهی، در اثر نفوذ نیتروژن از سطح نمونه ریزساختار نمونه. در نواحی نزدیک سطح از فاز فریت به آستنیت تغییر یافته است.

به طوری که این فاز (ناحیه سفید) از زمینه فریتی (ناحیه تیره) قابل تفکیک است (شکل 2-ب). با افزایش زمان نیتروژن دهی. ضخامت لایه آستنیتی افزایش یافته. (شکل 2- ج، د و ه) و پس از 12 ساعت نیتروژن دهی به 1000 میکرومتر رسیده است. و کل سطح مقطع عرضی نمونه فریتی با ضخامت 2 میلی متر به آستنیت تبدیل شده است (شکل 2-ه).

در زمان های کوتاه نیتروژن دهی؛ یعنی قبل از آستنیتی شدن کل ضخامت می توان توزیع غلظت نیتروژن

در داخل فولاد را از راه حل محیط نیمه بی نهایت مطابق رابطه (4) به دست آورد:

که در آن Cs غلظت تعادلی نیتروژن در سطح فولاد، X عمق نفوذ نیتروژن، erfc تابع خطا. D ضریب نفوذ نیتروژن و t زمان عملیات نیتروژن دهی است.

فولاد ضد زنگ

راه حل فوق در مسأله اخیر برای توزیع نیتروژن تا زمانی که غلظت در مرکز نمونه. تغییرات توجهی نداشته باشد برقرار است. همچنین این راه حل را می توان برای ارزیابی نرخ رشد ضخامت لایه آستنیت (xƴ). یا همان سرعت حرکت فصل مشترک آستنیت /فریت dXƴ/dt نیز به کار برد. در این حالت لازم است عبارت (x،t)C با حداقل غلظت نیتروژن. که موجب پایداری آستنیت می شود؛ Cƴ /α جایگزین شود. در این صورت نیازی به صادق بودن شرط فوق نیست و تا زمان تبدیل کامل فریت به آستنیت برقرار است.

با توجه به بالا بودن دمای فرآیند می توان فرض کرد. که غلظت در سطح فولاد به مقدار تعادلی خود در دما و فشار فرآیند می رسد. لذا مقدار عددی هر دو غلظت Cˢ و Cƴ /α را می توان از نمودار تعادلی فولاد به دست آورد. با استفاده از نمودار تعادلی فولاد در دمای 1200 درجه سانتی گراد و فشار 0/25 مگاپاسکال مقادیر 1/66، 1/11 و 0/668 به ترتیب برای Cˢ و Cƴ /α به دست می آید. ا طرف دیگر، در صورت برقراری رابطه (5) می توان سرعت حرکت فصل مشترک آستنیت/فریت dxƴ/dt. را به صورت تابعی از زمان نیتروژن دهی (t) مطابق رابطه (6) به دست آورد:

شکل (3) تغییرات ضخامت لایه آستنیتی تشکیل شده (xƴ ). را به صورت تابعی از زمان نیتروژن دهی (t) نشان می دهد. همانطور که در این شکل دیده می شود. ضخامت لایه آستنیتی تشکیل شده با ریشه دوم زمان نیتروژن دهی متناسب بوده و با آن ربطه خطی دارد. این امر نشان می دهد که استحاله فازی فریت به آستنیت مطابق رابطه (4) تحت کنترل نفوذ است.

ضریب نفوذ نیتروژن (D) با استفاده از شیب نمودار xy-√t (شکل 39 و رابطه (5) برابر با 6/54 × 10 به توان منفی 5 میلی متر مربع بر ثانیه به دست می آید. این مقدار حدود 50 درصد بالاتر از مقدار ضریب نفوذ نیتروژن. ( 4/04 × 10 به توان منفی 5 میلی متر مربع بر ثانیه) گزارش شده. برای فولاد Fe-17/8Cr-6/8Mn-4/95Ni در دمای 1200 درجه سانتی گراد و فشار 0/05 مگاپاسکال است.

فولاد ضد زنگ

علت اختلاف بین ضریب نفوذ نیتروژن در این دو تحقیق را می توان. به تفاوت ترکیب شیمیایی فولاد پایه و اختلاف بین غلظت تعادلی نیتروژن در سطح آنها. که به ترتیب برابر با 1/66 و 0/51 است، مربوط دانست. غلظت سطحی نیتروژن در تعادل ترمودینامیکی بین سطح فولاد و گاز N2 محفظه. توسط سه متغیر فشار گاز نیتروژن، دمای نیتروژن دهی و ترکیب شیمیایی فولاد تعیین می شود.

بنابراین در دمای ثابت، بالا بودن فشار گاز نیتروژن و مقدار کروم محتوی فولاد. در این تحقیق باعث افزایش مقدار نیتروژن تعادلی در سطح فولاد می شود. بالا بودن غلظت سطحی نیتروژن می تواند با ایجاد شیب غلظت بالاتر منجر به رشد سریع تر لایه آستنیتی شود. اما این امر باعث افزایش ضریب نفوذ نیتروژن نیز می شود. دلیل افزایش ضریب نفوذ با افزایش غلظت نیتروژن، انبساط (کرنش). شبکه بلوری فولاد در اثر انحلال اتم های نیتروژن است و با افزایش کرنش، نفوذ نیتروژن تسهیل می شود.


شکل (4) سرعت رشد لایه آستنیتی را به صورت تابعی از زمان نیتروژن دهی مطابق رابطه (69 نشان می دهد. ملاحظه می شود سرعت حرکت فصل مشترک در مراحل اولیه فرآیند نیتروژن دهی زیاد است. ولی با گذشت زمان کاهش می یابد. این امر به علت کاهش شیب غلظت نیتروژن بین سطح و مرکز نمونه با گذشت زمان است.

مکانیزم نفوذ نیتروژن در عملیات نیتروژن دهی محلولی

بررسی بیشتر تصاویر ارائه شده در شکل (2) نشان می دهد. که فصل مشترک لایه آستنیتی با زمینه فریتی یکنواخت و مسطح نیست. به منظور بررسی علت غیر مسطح بودن فصل مشترک، ریزساختار فصل مشترک فاز آستنیت/ فریت نمونه های نیتروژن دهی شده. در بزرگ نمایی بالاتر با میکروسکوپ نوری مورد بررسی قرار گرفت. نمونه ای از این تصاویر در شکل (5) ارائه شده است.

در این شکل دیده می شود که نفوذ نیتروژن هم از طریق داخل دانه ها (نفوذ شبکه ای). و هم از طریق مرزدانه ها صورت گرفته است. رشد فاز آستنیت به داخل دانه های فریت (پیکان های مشخص شده با حرف A) و در امتداد مرزدانه های فریت – فریت (پیکان های مشخص شده با حرف B) به ترتیب نشانگر نفوذ شبکه ای و نفوذ مرزدانه ای نیتروژن است. همچنین مشاهده می شود که عمق نفوذ نیتروژن در امتداد مرزدانه ها بیشتر از داخل دانه هاست.

فولاد ضد زنگ

در تعدادی از دانه ها پس از انجام نفوذ مرزدانه ای. در موقعیت هایی از مرزها مجدداً نفوذ از طریق این مرزها. به سمت داخل دانه ها صورت گرفته است (پیکان های مشخص شده با حرف c).

نفوذ در یک نمونه چند بلوری ناشی از اثر ترکیبی نفوذ مرزدانه ای و نفوذ شکبه ای است. و ضریب نفوذ ظاهری از رابطه

به دست می آید، که در آن Dapp ضریب نفوذ ظاهری یا کلی. DL ضریب نفوذ شبکه ای، Dgb ضریب نفوذ مرزدانه ای. δ ضخامت مؤثر مرزدانه و d اندازه دانه می باشد. به طور کلی، در هر دمایی ضریب نفوذ مرزدانه ای به علت وجود ساختار بسیار باز در مرزدانه ها. بیشتر از ضریب نفوذ شبکه ای است. ولی با تغییر دما، این اختلاف تغییر می یابد. زیرا ضرایب نفوذ مرزدانه ای و شبکه ای وابستگی دمایی متفاوتی دارند. نفوذ شبکه ای نسبت به نفوذ مرزدانه ای حساسیت بیشتری به تغییر دما دارد. به این صورت که با کاهش دماف نفوذ در مرزدانه ها با سرعت کمتری کاهش می یابد.

برعکس، با افزایش دما نفوذ در داخل دانه با سرعت بیشتری نسبت به نفوذ در امتداد مرزها افزایش یافته. و اختلاف ضریب نفوذ مرزدانه ای و شبکه ای کاهش می یابد. بنابراین، وابستگی دمایی متفاوت ضرایب نفوذ مرزدانه ای و شبکه ای، وجود نفوذ δ /d در کنار ضریب نفوذ مرزدانه ای و همچنین قابل توجه نبودن کسر حجمی مرزدانه ها باعث می شوند که در دماهای بالا سهم ضریب نفوذ مرزدانه ای در ضریب نفوذ کل در مقایسه با ضریب نفوذ حجمی ناچیز باشد.

اما در دماهای پایین ضریب نفوذ مرزدانه ای اهمیت بیشتری دارد. به طور کلی نفوذ مرزدانه ای در دمای کمتر از حدود 0/6 تا 0/8Tm. (دمای ذوب تعادلی به درجه کلوین Tm است)، اهمیت می یابد.

دمای نیتروژن دهی در تحقیق حاضر (1473 کلوین= 1200 درجه سانتی گراد). اختلاف ناچیزی در حدود 35k با دمای 1165 درجه سانتی گراد = 1438 کلوین = 0/8Tm. (نقطه ذوب فولاد مورد مطالعه در این تحقیق برابر با 1525 درجه سانتی گراد است. که با استفاده از نرم افزار ترموکلک محاسبه شده است. بنابراین، می توان گفت در دمای 1200 درجه سانتی گراد. نفوذ نیتروژن به داخل نمونه از دو طریق شبکه ای و مرزدانه ای اتفاق افتاده. و ضریب نفوذ مرزدانه ای در دمای 1200 درجه سانتی گراد در تعیین ضریب نفوذ کل اهمیت دارد.

در مدلی که توسط هریسون برای نفوذ در دماهای بالا ارائه شده، نشان داده شده است. که اگر عمق نفوذ بیشتر از اندازه دانه باشد. نفوذ در مادده چند بلوری ناشی از اثر ترکیبی نفوذ مرزدانه ای و شبکه ای است. در تحقیق حاضر با توجه به بالا بودن دمای عملیات نیتروژن دهی و بزرگ بودن عمق نفوذ از اندازه دانه. (شکل 2)، نفوذ نیتروژن به داخل نمونه طبق مدل هریسون بوده. و از دو طریق شبکه ای و مرزدانه ای اتفاق افتاده است. در برخی از مکان ها غیر یکنواختی فصل مشترک آستنیت/فریت می تواند. بیانگر بیشتر بودن ضریب نفوذ مرزدانه ای نسبت به ضریب نفوذ شبکه ای باشد.

به همین علت عمق نفوذ اتم های نیتروژن در امتداد مرزدانه نسبت به داخل دانه ها بسیار بیشتر است . از طرف دیگر گزارش شده است. که باافزایش غلظت اتم حل شده در مرزدانه ها، اتم ها از مرزدانه به داخل دانه نیز نفوذ می کنند. لذا امتداد یافتن جهت نفوذ نیتروژن از مرزدانه ها به داخل دانه ها. (پیکان های مشخص شده با حرف C در شکل 4). را می توان به این امر نسبت داد.

در تحقیق انجام شده بر روی عملیات نیتروژن دهی محلولی فولاد زنگ نزن فریتی Fe-24Cr-2Mo نشان داده شده است. که نفوذ نیتروژن از سطح نمونه هم از طریق مرزدانه ها. و هم از طریق داخل دانه ها صورت می گیرد. و ساختار فریتی در سطح نمونه با جذب نیتروژن به آستنیت تغییر می یابد. اما نفوذ نیتروژن به داخل نمونه و آستنیته شدن داخل نمونه فقط به واسطه نفوذ مرزدانه ای صورت می گیرد. در مطالعه دیگری که در زمینه عملیات نیتروژن دهی محلولی فولاد زنگ نزن فریتی Fe-24Cr-2Mo. صورت گرفته، نشان داده شده است.

که در نواحی نزدیک به سطح، استحاله فازی فریت به آستنیت ناشی از نفوذ شبکه ای نیتروزن بوده. و در حالی که این استحاله در مغز نمونه بیشتر توسط نفوذ مرزدانه ای صورت می گیرد. و علت نفوذ مرزدانه ای نیتروژن در دمای بالای فرآیند (1200 درجه سانتی گراد). به مشخصه های ویژه مرزدانه های فریت -فریت ارتباط داده شده است.

در شکل (5) همچنین دیده می شود که با نفوذ نیتروژن از سطح نمونه. فاز آستنیت از سطح جوانه زده و به شکل سوزنی به سمت مرکز نمونه رشده کرده است.

فولاد ضد زنگ

شکل 6- تغییرات ریزسختی در سطح مقطع عرضی نمونه ها قبل و پس از نیتروژن دهی به صورت تابعی از فاصله از سطح نمونه

در استحاله های حالت جامد، شکل فاز جدید به واسطه کمینه کردن مجموع انرژی کرنش الاستیک. و فصل مشترک دو فاز تعیین می شود. مقدار انرژی کرنش الاستیک نیز از طریق میزان هم سیمایی فصل مشترک تعیین می شود. در تحقیقی که توسط محمدزاده و اکبری در مورد نیتروژن دهی محلولی فولاد زنگ نزن فریتی Fe-22/75Cr-2/42Mo صورت گرفت. نشان داده است که تشکیل فاز آستنیت در حین فرآیند نیتروژن دهی محلولی. با جذب نیتروژن در فاز فریت شروع شده. و یا جوانه زنی و رشد فاز آستنیت با مورفولوژی سوزنی ادامه می یابد.

آنها با محاسبه عدم انطباق بین صفحات مختلف فازهای فریتی و آستنیتی نشان داده اند. که فصل مشترک فریت/آستنیت کاملاً هم سیما نبوده. بلکه حالت نیمه هم سیما دارد و لذا فاز آستنیت برای کم کردن انرژی کرنشی. در فصل مشترک فریت/آستنیت به شکل سوزنی رشد کرده است.

بررسی تغییرات ریزسختی

تغییرات ریزسختی در سطح مقطع عرضی نمونه ها قبل و پس از نیتروژن دهی. به مدت زمان های مختلف به صورت تابعی از فاصله از سطح نمونه در شکل (6) ارائه شده است. همانطور که در این شکل دیده می شود. سختی نمونه قبل از نیتروژن دهی (نمونه R) برابر با 262 ویکرز است. با انجام عملیات نیتروژن دهی سختی ناحیه نزدیک به سطح افزایش می یابد. و با افزایش فاصله از سطح مقدار سختی به تدریج کاهش می یابد (نمونه SN-2H). نیتروژن عنصر آلیاژی است که با حل شدن در فولادهای زنگ نزن باعث افزایش سختی این فولادها. از طریق استحکام دهی محلول جامد بین نشینی می گردد.

اما در اینجا علاوه بر مکانیزم تشکیل محلول جامد، انحلال نیتروژن. باعث تغییر ریزساختار فولاد از فریت به آستنیت نیز شده است. نتایج تحقیقات نشان می دهند. که مقدار نیتروژن با افزایش فاصله از سطح به طور پیوسته کاهش می یابد. و با کاهش مقدار نیتروژن محلول جامد، مقدار سختی کاهش می یابد. به عبارت دیگر تغییرات سختی از سطح. به سمت مرکز نمونه الگوی تغییرات غلظت نیتروژن را از سطح به مغز قطعه دنبال می کند.

در شکل (6) همچنین دیده می شو د که با افزایش زمان نیتروژن دهی مقدار ریزسختی. و ضخامت ناحیه سخت شده افزایش یافته است. این نتیجه به نوعی مؤید تغییرات ریزساختاری فولاد. در راستای ضخامت نمونه می باشد و همان گونه که قبلاً نیز نشان داده شده. با افزایش زمان نیتروژن دهی از 2 به 9 ساعت عمق نفوذ نیتروژن افزایش یافته. و به تبع آن ضخامت لایه آستنیتی تشکیل شده. در اثر نفوذ نیتروژن افزایش می یابد. اختلاف بین مقادیر سختی در زمان های مختلف نیتروژن دهی می تواند. به علت تفاوت در میزان نیتروژن موجود در نمونه های نیتریده شده در زمان های مذکور باشد.

با توجه به اینکه کل ضخامت نمونه ها. در زمان های 2 تا 9 ساعت به طور کامل نیتریده نمی شوند. لذا در داخل نمونه شیب غلظت نیتروژن به وجود آمده. و این شیب غلظت نیروی محرکه لازم برای نفوذ نیتروژن را فراهم می کند. در نهایت پس از 12 ساعت نیتروژن دهی. کل سطح مقطع عرضی نمونه به آستنیت با سختی تقریباً یکسان (420 ویکرز) تبدیل می شود.

نتیجه گیری

در این تحقیق به منظور مطالعه سینتیک رشد لایه آستنیت در سطح. و تأثیر افزودن نیتروژن بر ریزساختار و سختی فولاد زنگ نزن فریتی Fe-23Cr-2/4Mo. عملیات نیتروژن دهی محلولی در دمای 1200 درجه سانتی گراد. تحت اتمسفر گاز نیتروژن با فشار 0/25 مگاپاسکال به مدت زمان های 9،6،3،2 و 12 ساعت انجام گرفت. خلاصه نتایج بدست آمده عبارتند از:

  1. سینتیک عملیات نیتروژن دهی تحت کنترل نفوذ نیتروژن. با ضریب نفوذ متوسط 6/54×10به توان منفی 5 میلی متر مربع بر ثانیه است.
  2. با انجام عملیات نیتروژن دهی، نیتروژن به صورت مرزدانه ای. و شبکه ای نفوذ کرده و باعث استحاله فازی فریت به آستنیت می شود. این استحاله با جوانه زنی فاز آستنیت با شکل سوزنی. از سطح نمونه شروع شده و با افزایش زمان به سمت مرکز نمونه رشد می کند.
  3. سینتیک رشد لایه آستنیتی از معادله سهمی گون پیروی میکند. با افزایش زمان نیتروژن دهی ضخامت لایه آستنیتی متناسب با ریشه دوم زمان نیتروژن دهی محلولی افزایشی یافته. و پس از 12 ساعت نیتروژن دهی به 1000 میکرومتر می رسد.

با افزایش زمان نیتروژن دهی. مقدار سختی فولاد افزایش یافته و پس از 12 ساعت نیتروژن دهی. و کامل شدن استحاله فریت به آستنیت در کل ضخامت نمونه. از 262 به 420 ویکرز می رسد و شیب سختی از سطح نمونه به سمت مرکز حذف می شود.

فولاد ضد زنگ

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

فولاد 4301-میلگرد 4301-ورق 4301-تسمه 4301-استنلس استیل-فولاد نسوز 4301-استیل 304

 

فولاد 4301 -فولاد نسوز – ورق نسوزمیلگرد استیل 4301 – لوله استیل 4301- ورق استیل 4301-. قوطی استیل 4301 – تسمه استیل 4301. – فولاد ضد زنگ – فولاد زنگ نزن – ورق ضد اسید – فولاد ضد اسید

فولاد 4301

فولاد 4301-میلگرد 4301-ورق 4301-تسمه 4301-استنلس استیل-فولاد نسوز 4301-استیل 304-

میلگرد استیل 304

فولاد 4301 در فرایندهای شیمیایی، صنایع غذایی و لبنی و آشامیدنی، انتخابی مناسب است. این گرید دارای ترکیبی عالی از استحکام، مقاومت در برابر خوردگی و قابلیت ساخت است.

کاربرد ورق 4301– در ساخت تجهیزات و ابزارهایی برای صنایع غذایی، بهداشتی، پزشکی و آزمایشگاهی و صنایع خودرو مورد استفاده قرار می گیرد.

استنلس استیل ۳۱۶ در صنایع شیمیایی، صنایع کاغذ و خمیرکاغذ. برای پردازش و توزیع مواد غذایی و نوشیدنی و در محیط های خورنده تر استفاده می شود. همچنین در صنایع دریایی به دلیل مقاومت در برابر خوردگی استفاده می شود.

علل از بین رفتن کروم در عملیات حرارتی

در عملیات حرارتی و یا جوش‌کاری، دمای فولاد ضد زنگ به حدود 850-550 درجه سانتیگراد می‌رسد. کروم و کربن با یکدیگر وارد واکنش می‌شود. و کاربایدکروم (Chromium Carbide) تولید می‌گردد. که در امتداد مرز دانه‌ها رسوب می‌کند. به همین دلیل کروم موجود در منطقه اطراف مرزدانه (ناحیه مرزی) تخلیه می‌شود. ناحیه مرزی که کروم آن تخلیه شده نسبت به .سایر مناطق سالم سطح فلز که کروم آن مناطق تخلیه نشده‌اند در برابر خوردگی مقاومت کمتری دارد.

ورق نسوز

نحوه استخراج و شکل‌ گیری ورق نسوز بسیار پیچیده است. تا حدی که گاهی اوقات حتی مهندسینی که با یک یا چند نوع فلز نسوز خاص کار می‌ کنند. نمی ‌توانند به‌ طور کامل متوجه شوند .که فرایند استخراج، پردازش و تشکیل آن فلزات به چه صورتی بوده است. اما در همه فلزات نسوز یک ویژگی خاص مشترک است. آن‌ هم نقطه ذوب فوق ‌العاده بالای آن ‌ها می ‌باشد.

تنگستن

به ‌عنوان مثال تنگستن، در دمای 3410 درجه سانتی‌ گراد (6170 درجه فارنهایت) ذوب می‌ شود. که دو برابر آهن و ده برابر نقطه ذوب سرب است. فلزات نسوز در جدول شیمی مندلیف همگی در یک بخش از جدول هستند. با اینکه 12 نوع فلز نسوز در این جدول مشخص شده‌ است. اما فقط 5 آلیاژ به‌ طور گسترده ‌ای مورد استفاده قرار می ‌گیرد. این پنج فلز عبارت ‌اند از:

  • تنگستن
  • مولیبدن
  • نیوبیوم
  • تانتالوم
  • رنیوم
فلزات نسوز

همه این فلزات نسوز به ‌جز رنیوم دارای ساختار مکعب بدون محور هستند. علیرغم این واقعیت انواع ورق آهن نسوز دارای شباهت ‌های زیادی هستند. اما از نظر کیفیت مانند ویژگی چگالی. مقاومت در برابر سایش و خوردگی هر کدام از این فلزات نسوز دارای ویژگی‌ های خاص خود می ‌باشند. بسیاری از این ویژگی ‌ها کاملاً منحصر به ‌فرد بوده و در فلزات دیگر یافت نمی ‌شوند.

چگونگی ساخت وسایل با دمای ذوب بالای فولاد آلیاژی

همان‌ طور که گفتیم مثلاً از فلزات نسوز در اتومبیل‌ سازی استفاده می‌ شود. با توجه به دمای ذوب بسیار بالای این فلزات چگونه در موارد مختلف از آن ‌ها استفاده می ‌شود؟ برای پاسخ تخصصی به این سؤال باید گفت فلزات نسوز از کنسانتره ‌های سنگ استخراج می ‌شوند. سپس به‌ صورت مواد شیمیایی فرآوری می شود و در گام بعدی به پودر تبدیل می‌ شوند. در مرحله بعدی پودرها را در قالب ‌های مختلف می ریزند. و دوباره آن ‌ها را منسجم و به شکل دلخواه در می ‌آورند. پخت این پودرها شامل گرم شدن درون قالب برای مدت زمان طولانی است. در زیر گرما، ذرات پودر شروع به اتصال می ‌کنند و یک قطعه جامد را مطابق قالب تشکیل می‌ دهند.

میلگرد استیل 304

ذوب فلزارت

پخت می ‌تواند فلزات را در دمای پایین ‌تر از نقطه ذوب آن ‌ها نیز پیوند دهد. این یک مزیت قابل توجه هنگام کار با فلزات نسوز است. بنابراین نقطه ذوب بالای این فلزات و سهولت واکنش اکسیداسیون آن ‌ها (ترکیب فلز با اکسیژن هوا). در دمای بالا باعث می ‌شود. که متخصصین از پودر این فلزات برای کارهای مختلف استفاده کنند. و مانند فلزات دیگر به‌ صورت ریخته ‌گری مورد مصرف قرار نمی ‌گیرند. علم متالورژی پودر مدرن در واقع در اوایل دهه 1900. و هنگامی ‌که رشته‌ های لامپ رشته ‌ای از پودرهای تنگستن تولید شدند. ابداع شد و بعد از آن کاربرد فراوانی داشت. از همان ابتدا که دانشمندان کشف کردند چگونه می ‌توانند. از فلزات نسوز در تولیدات خود استفاده کنند. ابزارهای برش را ساختند که یکی از بهترین کاربردهای این نوع فلزات می ‌باشند.

مشخصات فولاد نسوز

دیگر فلزات نسوز نیز مانند تنگستن دارای نقطه ذوبی بالاتر از 3632 درجه فارنهایت (2000 درجه سانتی ‌گراد) هستند. نقطه ذوب بالای فلزات نسوز و مقاومتشان در برابر خوردگی و فرسایش. آن ‌ها را به فلزات بسیار عالی برای برش تبدیل کرده است.

فلزات نسوز همچنین در برابر شوک گرمایی بسیار مقاوم هستند. به این معنی که گرم شدن و سرمایش مکرر به‌ راحتی باعث انبساط، فشار. و ترک‌ خوردگی آن‌ ها نمی ‌شود.

این نوع فلزات دارای چگالی بالا (سنگین) و همچنین خاصیت هدایت الکتریکی و حرارتی خوبی هستند.اما همان ‌طور که در قسمت قبلی هم گفتیم. به‌ طور خاص این ویژگی‌ ها در هر کدام از آن ‌ها متفاوت است. پودرهای فلزی در اندازه‌ ها و فرم ‌های خاصی تولید می ‌شوند. سپس مخلوط ‌شده تا مخلوط تهیه شده قبل از فشرده و پخته شدن خواص مورد نیاز را ایجاد کند.

کاربرد فولاد نسوز

کاربرد فولاد نسوز، بر اساس میزان مقاومت در برابر حرارت و خواص مکانیکی مورد نیاز فولاد است.

استفاده از فولاد مقاوم تر در برابر حرارت، ممکن است به دلیل ترد بودن،گران مضر نیز باشد. این فولاد نباید در معرض شعله قرار گیرد و از تماس مستقیم آن با کربن باید جلوگیری شود.

فولادهای نسوز در کوره های صنعتی، دیگ های بخار، لوله های بخار. رکوپراتورها، صنایع شیمیایی و نفتی، خطوط گاز و سوخت. جعبه های آتش نشانی، بخاری ها، مقاومت ها. مبدل های حرارتی و کارخانه های سوزاندن زباله و … استفاده می شوند.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

A387 – ورق A387- فولاد A387-فولاد ضد زنگ – فولاد زنگ نزن-فولاد حرارتی-فولاد ضد خوردگی

 

A387 – فولاد A387-صفحه ی فولادی CL2-صفحه فولادی CL1فولاد ضد زنگ – فولاد ضد خوردگی – فولاد حرارتی- ASTM

ASTM A387 CL1- صفحه فولاد CL2- ورق ASTM A387-ورق مخزنی – ورق مخازن تحت فشار- ورق ضد خوردگی

ASTM A387 CL1، CL2 فولاد درجه یک نوع فولاد است که با ترکیب cr، Mo.، Cr-Mo میباشد. که عمدتا برای مخازن تحت فشار بالا و بالا استفاده میگردد. گرید فولاد A387 gr 12 CL1 / A387gr 12 CL2 مطابق با استاندارد ASTM ترکیبات شیمیایی. و خواص مکانیکی صفحات فولادی ASTM A387CL1 / A387CL2.

 

فولاد A387 CL1، CL2 ورق فولاد آلیاژی کروم-مولیبدن را برای دیگهای جوش داده شده. و مخازن تحت فشار برای فعالیت هایی. با درجه حرارت بالا طراحی و تولید میشوند.

این نوع از فولاد با گریدها و مشخصات و نمرات. 2، 12، 11، 22، 22L، 21، 21L، 5، 9 و 91 ساخته. و به بازار تقاضا در بخش صنعت عرضه میشود.

 

این نوع فولاد با روش حرارت متناوب و باز پخت تولید میشود. این نوع فولاد A387 gr11 / 12 CL1 / 2 با آنالیز و انجام پروسه حرارت ایجاد میشود. و مطابق با الزامات و عناصر شیمیایی موجود آن با نام های کربن.، منگنز، فسفر، گوگرد، سیلیکون، کروم، مولیبدن، نیکل، وانادیوم.، کلومیمیم، بور، نیتروژن، آلومینیوم، تیتانیوم ، و زیرکونیوم نوع گرید آن مشخص میگردد.

این نوع فلز برای ارزیابی نوع مقاوم آن تحت آزمایشات تنش قرار میگیرد . و همچنین با مقادیر مورد نیاز هر بخش از صنعت. میزان استحکام کششی و میزان مقاومت و ضخامت آن کنترل میگردد.

ارزیابی ریز ساختار و خواص مکانیکی اتصال غیر همسان فولاد A387-gr.11 و A240-tp-.316

اتصال غیر همسان فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی.- در گذشته بصورت وسیعی در صنایع بکار گرفته شده است. دو فولاد زنگ نزن آستنیتی A240-tp.316 .و فولاد کم آلیاژ فریتی A387-gr.11 توسط جوشکاری قوسی تنگستن. تحت گاز محافظ با دو جریان ثابت و پالسی و با استفاده از دو نوع فلز. پرکننده ی Er309l و Ernic-3 بهم جوش داده شدند.

 

پس از آزمونهای متالوگرافی آزمون تعیین ترکیب شیمیایی، ریز سختی سنجی، کشش و ضربه، مشخص گردید .که بطور کلی، نمونه های جوشکاری شده توسط جریان پالسی – بدلیل گرمای ورودی کمتر. و ایجاد اختلاط بیشتر در حوضچه ی جوش، ضمن کاهش وقوع پدیده های نا مطلوب متالوژیکی. مانند تشکیل منطقه ی کمبود از کربن، منطقه ی انتقالی و منطقه ی مخلوط نشده، بهبود. خصوصیت مکانیکی اتصال را در بر داشتند. نتایج نشان دادند که فلز پر کننده ی پایه نیکل، بدلیل محدود کردن نفوذ کربن.به درون حوضچه ی جوش و کاهش احتمال تشکیل منطقه ی. انتقالی نسبت به فلز پرکننده ی دیگر، مطلوب تر است.

در گذشته اتصال دهی ناهمجنس فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی بطور گسترده ایی در مولدهای بخار، مبدل های حرارتی و تجهیزات لوله کشی در نیروگاه ها، پالایشگاه ها و صنایع پتروشیمی بکار رفته است. بطور مثال : در نیروگاههای با سوخت فسیلی، لوله های مرحله ی پیشگرم دیگهای بخار از نوع و جنس فولادهای کم آلیاژ هستند.

 

و لوله های بخش فوق گرمایش بدلیل دما و فشار کاری بسیار بالاتر، از نوع و جنس. فولاد زنگ نزن انتخاب میشوند. این انتخاب ، سبب صرفه جویی چشمگیر در هزینه ها خواهد شد. این اتصال به آسانی با اغلب روشهای مرسوم به خصوص جوشکاری قوسی تنگستن تحت گاز محافظ gtaw. و جوشکاری قوس الکترود روپوش دار smaw تولید شده است. مورد دیگر برای کاربرد این نوع اتصال، روکش کاری فولادهای کربنی یا کم آلیاژ. با فولادهای زنگ نزن آستنیتی یا آلیاژ پایه نیکل است. با این روش، میتوان مقاومت به خوردگی مخزن های از جنس فولاد کربنی. را با صرف کمترین هزینه تا مقدار قابل توجهی بهبود بخشید.

فرآیند اتصال بین فولاد زنگ نزن آستنیتی و فولاد کم آلیاژ فریتی، چند پدیده ی متالوژیکی قابل توجه به همراه دارد. یکی از پدیده هایی که در هنگام جوشکاری، عملیات حرارتی پس از جوشکاری و در حین قرارگیری در شرایط کاری برای این نوع اتصال رخ میدهد، انتقال کربن از فولاد کم آلیاژ به سمت ناحیه ی جوش میباشد.

 

این پدیده موجب ایجاد یک منطقه ی کمبود از کربن Carbon Depleted Zone,CDZ در ناحیه ی متأثر از حرارت در فولاد کم آلیاژ و در مجاورت مرز ذوب میشود. تحقیقات نشان داده اند که این منطقه ی کمبرد از کربن احتمالاً در معرض ترک خوردگی خزشی قرار خواهد گرفت. پروسه ی انتقال کربن، شامل انحلال کاربیدها در فولاد فریتی و نفوذ کربن بدرون حوضچه ی جوش میگردد. نیروی محرکه برای این پروسه، وجود شیب غلظتی کربن یا شیب اکتیویته ی کربن بین فولاد فریتی کم کروم و فلز جوش آستینی پر کروم است.

 

در اتصال های جوش بین دو فولاد نا همسان آستینی – فریتی، وجود منطقه ی انتقالی یا اختلاط جزیی درون حوضچه ی جوش و در مجاورت فولاد فریتی گزارش شده است. در این منطقه، اختلاط بین فلز جوش و فلز پایه ناقص است. و ترکیت شیمیایی آن شیئ از ترکیب فلز پایه تا فلز جوش است. پهنای منطقه ی انتقالی مطابق با نتایج آزمونهای انجام گرفته، بین 20 الی 100 میکرون و تابع عواملی ماننند ترکیب شیمیایی و میزان حرارت ورودی است.مرزی که این منطقه را از حوضچه جدا میکند. با مرز ذوب موازی است. و بعنوان مرز نوع II شناخته میشود. شناخت این ناحیه، در جوشهای نا همسان فریت به آستنیت بسیار اهمیت دارد. زیرا طبق آنچه پیش تر گفته شد . این منطقه یکی از مناطقی است که در معرض وقوع آسیب های زیادی میباشد.

a387-فولاد ضد خوردگی-فولاد ضد سایش- فولاد ضد زنگ-فولاد زنگ نزن-www.foolad-paytakht.ir

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

صفحه قبل 1 2 3 صفحه بعد