x تبلیغات
شرکت خشکه و فولاد پایتخت

انواع فولاد ابزار

 فولاد تندبر (High Speed Tool Steels).
فولاد سرد كار (Cold Work Tool Steels).
فولاد مقاوم به شوك (Shoch Resisting Tool Steels).
فولاد كم آلياژ (Low Alloy Special-purpose Steels).
فولاد قالب سازی (Mold Steels).
فولادهاي سخت شونده با آب ( water-hardening tool steels)
فولاد گرم كار (Hot Work Tool Steels)

کاربرد و خصوصیات ورق مخزنی – حرارتی A285

 

خصوصیات ورق مخزنی – حرارتی A285

مقاوم در برابر خوردگی – ابعاد دقیق – ضد زنگ – فشار و درجه حرارت بالا را تحمل میکند.- توزیع عالی تنش

کاربرد ورق مخزنی

• مخازن تحت فشار راکتور هسته‌ای
• دیگ بخار و مبدل حرارتی
• توربین‌های گازی و بخار
• نیروگاه‌های حرارتی
• نوار نقاله کشویی
• صنایع شیمیای

مشخصه های فولادهای استنلس

 

مشخصه های فولادهای استنلس

مشخصه های طیف وسیع فولادهای استنلس می تواند در مقایسه با فولادهای نرم کربنی رایج دیده شود. به طور کلی استنلس استیل دارای خواص زیر هستند.

https://www.foolad-paytakht.ir

  • میزان کار سختی بالاتر
  • چکش خواری بیشتر
  • استحکام و سختی بالاتر
  • مقاومت به خوردگی بالاتر
  • چقرمگی برودتی بیشتر
  • پاسخ مغناطیسی ضعیف تر (تنها فولادهای آستنیتی)
  • مقاومت به خوردگی در صورت پرداخت سطح محصول باید حفظ شود.
  • این خواص به طور خاص در مورد خانواده آستنیت ها صادق است. و در مورد سایر گریدها و گروه ها درجات متغیری دارد.

این خواص برای تقریباً تمام زمینه های کاربردی استنلس استیل لازم است. اما انتخاب روش های ساخت و تجهیزات را تحت تأثیر می گذارد.

لوله آلیاژی - لوله - لوله فولادی -لوله فلزی-pipe steel

 لوله (Pipe) یک مقطع توخالی استوانه ای است که عمدتاً از آن برای انتقال مواد قابل جریان. مانند مایعات، گازها، دوغاب ها و پودرها استفاده می شود. از لوله ها همچنین برای ساخت سازه ها استفاده می شود. مقاطع توخالی لوله ای، به مراتب سفتی بر اساس وزن واحد بیشتری نسبت به مقاطع توپر دارند. لوله از مواد مختلفی از جمله سرامیک، شیشه، فایبرگلاس، بسیاری از فلزات، بتن و پلاستیک ساخته می شود. در گذشته لوله های چوبی و سربی نیز مرسوم بودند.

لوله های فلزی به طور معمول از فولاد آلیاژهای آهن ساخته می شوند. مانند فولاد کربنی، فولاد زنگ نزن، فولاد گالوانیزه و چدن نشکن. لوله های پایه آهنی، در صورت استفاده در جریان آب اکسیژن دار در معرض خوردگی قرار دارند. از لوله های آلومینیوم ممکن است در مواردی استفاده شود که آهن با مایع سرویس ناسازگار باشد. با وزن یک پارامتر مشکل ساز باشد.

از لوله های مسی بیشتر برای سیستم های لوله کشی آب خانگی (قابل شرب). و لوله های سیستم های تبرید و کویل های انتقال حرارت (برای مثال در کندانسورها و رادیاتورها) استفاده میشود. از لوله هایی با جنس آلیاژهای اینکونل . فولاد کروم مولی و تیتانیوم برای دماها و فشارهای بالا در تأسیسات کارخانجات فرآیندی و نیروگاه ها استفاده میشود. ارزش بازار جهانی لوله های فولادی در سال 2019 برابر 142.4 میلیارد دلار بوده. و انتظار می رود از سال 2020 تا 2027 با نرخ رشد مرکب سالانه 6.2% رشد کند. و به 54.68 میلیارد دلار برسد.

لوله فولادی

لوله بدون درز – لوله یکپارچه

لوله بدون درز – Seamless pipe- که به مانیسمان نیز مشهور است. یکی از پرکابردترین محصولات فولادی است. که در صنعت نفت-پتروشیمی- گاز و همچنین در قطعه سازی مصارف فراوانی دارد. لوله های بدون درز در بازار همچنین به عنوان مقاطع ضخیم و بسیار مقاوم تحت فشار شناخته می شود. زیرا به دلیل یکنواخت بودن و نداشتن درز جوش. دارای مقاومت بسیار بالایی در مقابل فشار و تنش های فیزیکی است. به طوری که به خوبی خود را در هر نوع شرایط آب و هوایی مطابقت می دهد. پروسه تولید مانسمان برای ساخت لوله مانسمان از استاندارد ASTM. – به شماره A106 – A53. و همچنین استاندارد نفت و گاز API 5L استفاده می شود.

 

پروسه تولید لوله های مانیسمان نیز بدین گونه است که در آن یک شمش فولادی تحت کشش و نورد. افزایش طول یافته و سپس با وارد شدن میله جامد نوک تیز به مرکز شمش گذاخته شده. لوله ای بدون درز را ایجاد می کند.

تولید این نوع از سایزهای بزرگتر به کوچکتر است. و سایزهای 2/1 و 4/3 و 1 اینچ معمولاً به روش سرد است. در تولید این مقاطع عمدتاً از شمش های فولادی گرد استفاده می کنند. البته تولید لوله مانیسمان از مقاطع چهارگوش نیز امکان پذیر است. اما به دلیل اینکه این مقاطع حتماً باید به صورت دایره ای و یکنواخت باشند. گرد کردن شمش های زاویه دار مستلزم صرف هزینه و وقت خواهد بود.

در مجموع پروسه تولید لوله های مانسمان شامل مراحل برش. پیش گرم، مرحله Piercing، عبور از دستگاه الانگاتور، شلیک سمبه. تاب گیری، جداسازی سمبه، کروی سازی، مرحله کشش، خنک سازی، مرحله اندازه گیری. مرحله آزمایش، مرحله کونیک کردن، پولین و در پایان باندل کردن است.

تاریخ ابداع و ساخت لوله های بدون درز به اواخر قرن 19 بر می گردد. و این روش نخستین بار توسط مهندسی آلمانی بنام ((مانسمان))به کار رفت.

کاربرد لوله مانیسمان

کاربرد لوله مانیسمان

از کاربردهای این نوع لوله میتوان به موارد زیر اشاره نمود.

  • خطوط فشار قوی
    • خطوط ولتاژ بالا – واژه ولتاژ بالا یا فشار قوی به مدارهای الکتریکی ای اطلاق میگردد. که بخاطر میزان ولتاژ بالای موجود در آنها نیازمند تدبیرات ایمنی ویژه یا عایقبندی مناسب هستند. مدارهای ولتاژ بالا در انتقال انرژی الکتریکی,لامپ اشعه کاتد,اشعه ایکس بکار میروند.
    • ولتاژ بالا بمعنی ولتاژی بیش از 1000 ولت است. بدین معنی که ولتاژهای بیش از هزار ولت را ولتاژ بالا و زیر هزار ولت را ولتاژ پایین مینامند.
    • تأثیرات خطوط فشار قوی بر سلامتی : گفته میشود زندگی در نزدیکی خطوط فشار قوی احتمال بیماریهای نظیر سرطان,. ناباروری و برخی بیماریهای روانی را افزایش میدهد. یک راه حل مبارزه با این مشکل استفاده از خطوط زیر زمینی انتقال برق فشار قوی است.
    • حریم خطوط فشار قوی : برای حفظ مردم از اثرات سوء میدانهای مقناطیسی ناشی از خطوط فشار قوی, برای حفظ برق 20 کیلوولت 5 متر< 63کیلووت 13 متر, 132 کیلوولت 15متر, 230 کیلوولت 17متر و 400 کیلوولت 20 متر حریم در نظر گرفته شده است.
  • خطوط هیدرولیکی
  • خطوط صنایع دارویی و غذایی
  • خطوط نفت و گاز

لوله های پلاستیکی

 

لوله های پلاستیکی

لوله های پلاستیکی به دلیل خواصی از قبیل وزن سبک، مقاومت شیمیایی بالا. خواص غیر خورنده و سهولت در ایجاد اتصالات. بسیار مورد استفاده قرار می گیرند. مواد پلاستیکی مورد استفاده عبارتند از : پلی وینیل کلراید (PVC). پلی وینیل کلرید کلر دار (CPVC)، پلاستیک تقویت شده با الیاف (FRP). ملات پلیمر تقویت شده (RPMP), پلی پروپیلن (PP), پلی اتیلن (PE), پلی اتیلن چگالی بالا اتصال – عرضی (PEX). پلی پوتیلن (PB), و آکریلونیتریل بوتادین استایرن (ABS). در بسیاری از کشورها. لوله های پی وی سی بیشترین لوله های مورد استفاده برای لوله های دفنی توزیع آب آشامیدنی. و شبکه های فاضلاب هستند. محققان بازار پیش بینی می کنند. که کل درآمد جهانی لوله های پلاستیکی در سال 2019 بیش از 80 میلیارد دلار باشد. بازار اروپا در سال 2020 نزدیک به 12.7 میلیارد یورو خواهد بود.

نبشی فولادی - فولاد ضد سایش -فولاد آلیاژی

 نبشی پروفیلی است که سطح مقاطع آن بر خلاف تسمه نوردی و تسمه فابریک و میلگرد ، دو ضلع بر هم عموددارد و یکی از پر کاربردترین محصولات فولادی میباشد. که در بخش های متفاوتی مورد استفاده قرار میگیرد و همینطور مانند میلگرد یکی از مصالح اساسی و پرکاربرد در صنعت و ساختمان سازی میباشد. فرایند تولید نبشی بسیار پیچیده تر از سایر محصولات فولادی است.
نبشی ها از لحاظ روش تولید به دودسته ی نبشی پرسی و نبشی فابریک تقسیم مبشوند و از لحاظ شکل ظاهری به دو دسته ی نبشی بال مساوی و نبشی بال نا مساوی تقسیم میشوند.

نبشی فولادی - فولاد ضد سایش -فولاد آلیاژی

میلگرد استیل 420-لوله استیل 420- ورق استیل 420-فولاد زنگ نزن – فولاد ضد زنگ-استیل X2-Cr13 – استیل C

 

میلگرد استیل 420-لوله استیل 420- ورق استیل 420-فولاد زنگ نزن – فولاد ضد زنگ-استیل X2-Cr13 – استیل C 56 -فولاد آلیاژی – فولاد حرارتی

استیل 420- میلگرد استیل 420- ورق استیل 420-فولاد زنگ نزن - فولاد ضد زنگ

استیل 420 از سری 400 استیل های زنگ نزن، محصولاتی عموماً با قابلیت شکل پذیری بالا و مقاومت زیاد در برابر خوردگی هستند. از دیگر ویژگی های این سری به خاصیت بگیر و همیشه مغناطیسی بودنشان اشاره می شود.

جایی که میزان کم کربن و ایفای نقش پر رنگ توسط کروم و مولیبدن. این فولاد را به محصولات پر کاربردی در ساخت وسایل مختلف تبدیل کرده است.

ترکیب شیمیایی

استیل 420 به عنوان یکی از زیرشاخه های سری 400 محصولی که آن را در آمریکا به نام S42000. در انگلیس با نام C 56 و در سایر نقاط اروپا با نام X2-Cr13 می شناسند. به عنوان یکی از سخت ترین ورق استیل های موجود بواسطه داشتن مقدار زیادی کروم شناخته می شود.

شاید بتوان مهمترین عامل پیدایش ویژگی های منحصر بفرد این محصول را داشتن کرومی 12 الی 14 دانست. که از بیشتر استنلس استیل ها دارای عدد بزرگتریست (گفتنیست که اعداد بزرگتری نیز مانند کروم 17 درصدی در استیل 430 فریتی و… به چشم می خورد). در همین رابطه استیل های 420 دارای حداقل 0.15% کربن0.1%، منگنز 1.% سیلیسیم 0.04%، فسفر 0.03% گوگرد هستند.

 

این محصولات در طی عملیات حرارتی به وجود می آیند. و علاوه بر مقاومت بالا در برابر خوردگی و پولیش کاری. دارای انعطاف پذیری بالایی (به ویژه در حالت آنیل شده) نیز هستند.

دیگر اعضای این سری مانند استیل های 410، 416 و C 440 از جمله مهمترین محصولات مشابه با قابلیت جایگزینی با این محصول هستند. البته با این توضیح که ویژگی های کاربردی این محصولات نیز با کاری که در پیش است. همخوانی داشته و مثلاً از نظر شرایط کاری، دمای فرایند، غلظت مواد در ارتباط با فلز (مثلاً اسید و کلریدها). و یا نحوه فرآوری محصول همخوانی داشته باشند.

ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

آدرس اینستاگرام:https://www.instagram.com/folad_paytakht

کاربرد استیل 420- ویژگی استیل 420

 

کاربرد

علاوه بر قاشق و چنگال هایی که به آنها اشاره شد. این محصولات برای ابزار آلات جراحی، ساخت تیغه های برشی و دریچه های سوزنی نیز مورد استفاده قرار می گیرند.

میلگرد استیل 420

کاربردها در میلگرد استیل 420

ماشین اجزا، سوپاپ و پمپ، کارد و چنگال، لوازم جراحی، تیغه های توربین های بخار، دسته های بازویی کوچک، لوازم ورزشی، ابزار آلات و…

مقاومت خوردگی:

مناسب برای خوردگی های محیطی

بهترین مقاومت در برابر خوردگی این فولاد در کوئنچ تمپر در دمای 200 درجه سانتی گراد می باشد.

ویژگی

تا مرز 650 درجه سانتی گراد به صورت سرویس متداول و تا 750 درجه سانتی گراد به صورت سرویس تناوبی

جوش پذیری:

چون میلگرد استیل 420 آلیاژ سخت شده هوایی است. یک پیش گرمایی ما بین دمای 200 الی 250 درجه سانتی گراد قبل از جوش دادن باید صورت گیرد.

بعد از انجام جوش باید 6 الی 8 ساعت، در دمای 700 الی 750 درجه سانتی گراد آنیل و سپس سرد کردن هوایی صورت گیرد.

عملیات حرارتی:

آنیل 800 – 750 درجه سانتی گراد/سرد کاری آهسته

سخت کاری : 1030-980 درجه سانتی گراد

بازگشت: 650 – 600 درجه سانتی گراد

ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

آدرس اینستاگرام:https://www.instagram.com/folad_paytakht

تأثیر عناصر آلیاژی در فولادهای ضد زنگ

 

 

تأثیر عناصر آلیاژی در فولادهای ضد زنگ

کاهش عنصر کروم و کربن برای حذف تشکیل کاربید کروم برای کاهش خوردگی بین دانه ای (L304-347-321-I316)

مقدار افزایش عنصر مولیبدن برای افزایش مقاومت در برابر خوردگی حفره ای (316)

مقدار افزایش درصد عنصر کروم و نیکل برای استحکام در دمای بالا و مقاومت در برابر پوسته ای شدن (310-309)

میزان افزایش تیتانیوم و نیوبیوم برای ایجاد خاصیت جوش پذیری (1.4016)

خواص مثبت

مقاومت بالا در برابر اکسایش

میزان مقاومت در برابر رطوبت

مقاومت در برابر تنش های حرارتی

مقاومت بالا در مجاورت مواد خورنده

 

استحکام خیلی خوب

ماشین کاری خوب

مقاومت به پوسته ای شدن

خواص منفی

جوش پذیری (در بعضی از فولادهای این گروه جوشکاری سخت می باشد)

 

ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

فولاد ۴۰۱۶-میلگرد ۴۰۱۶-ورق استیل ۴۰۱۶-تسمه استیل

 

 

فولاد ۴۰۱۶ یا استیل ۴۳۰ برخلاف استیل های ۳۰۴ و ۳۱۶، استیل های سری ۴۰۰ از نوع فولادهای زنگ نزن مارتنزیتی (فولاد ضد زنگ) هستند. و مانند بسیاری از فولادها قابلیت سختی پذیری از طریق عملیات حرارتی کوئنچ-تمپر را دارا می باشند.

همچنین ساختار مارتنزیتی آنها سبب جذب آهنربا میشود. لذا در اصطلاح به «استیل بگیر» معروف هستند. این فولادها دارای حداقل ۱۱٫۵ درصد کروم می باشند. به همین دلیل خرید استیل بگیر و همینطور فروش استیل بگیر همیشه در بازار آهن آلات مطرح بوده است.

 

یکی از رایج ترین و ارزان ترین انواع ورق استیل، ورق استیل بگیر ۴۳۰ (فولاد ۴۰۱۶) میباشد. که در دو نوع مات و براق در بازار موجود است. استنلس استیل گرید ۴۳۰ که با شماره استاندارد ۱٫۴۰۱۶ مشهور است. جزء فولادهای کم کربن، نرم و حاوی مقدار قابل توجهی کروم است و قابلیت عملیات حرارتی ندارد. این استیل به دلیل مقاومت در برابر خوردگی و انعطاف پذیری خوب معروف است. همچنین دارای خاصیت مغناطیسی بوده و جذب آهن ربا می شود. و با توجه به مقاومت آن در برابر اسید نیتریک می توان در کارهای شیمیایی خاص از آن استفاده کرد. به طور کلی، مقاومت به خوردگی استنلس استیل های سری ۴۰۰ نسبت به استنلس استیل های سری ۳۰۰ (استیل های آستنیتی) پایین تر است.

گرید ۴۳۴ دارای ویژگی های مشابه استیل ۴۳۰ (فولاد ۴۰۱۶) است. اگرچه این یک نسخه حاوی مولیبدن است. وجود مولیبدن باعث افزایش مقاومت خوردگی استیل می شود.

از مهمترین پارامترها در انتخاب استیل ۴۳۰ می توان به ابعاد ورق استیل به متر، ضخامت ورق به میلیمتر. و طول رق که به صورت ۶ متری و ۳ متری و یا رول ، و آلیاژ ۴۳۰ و ۴۱۰ می توان اشاره کرد. که تمام این موارد در محاسبه قیمت ورق استیل ۴۳۰ نقش مهمی دارند.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان ))
صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

فولاد 3355-میلگرد 3355-تسمه 3355-فولاد تندبر 3355

 

فولاد 3355-میلگرد 3355-تسمه 3355-فولاد تندبر 3355-فولاد ابزار3355-فولاد T1-فولاد HSSفولاد 1.3355 که با نام فولاد T1 نیز شناخته می شود از جمله فولادهای آلیاژی بوده. و در دسته فولادهای ابزار تندبر (خشکه هوایی) قرار می گیرد. ترکیب شیمیایی این فولاد شامل 5.18 – 17 درصد تنگستن، 5.4 – 5.3 درصد کروم، 5.1 – 1 درصد وانادیوم می باشد.

این فولاد از فولادهای ابزار تنگستنی بوده و مقاومت به سایش و استحکام خوبی دارد. چقرمگی خوب و قابلیت برش بالا از دیگر ویژگی های فولاد 3355 است. این فولاد سختی عمق بالایی نیز دارد. سختی این فولاد حدود 62 تا 66 راکولسی است. فولاد تندبر T1 یک فولاد هوا یا روغن سخت شده است. که از عملکرد جامع خوبی برخوردار است.

مصارف فولاد تندبر 3355
مصارف فولاد 1.3355 همانند سایر فولادهای تندبر بیشتر معطوف به ابزارهای برشی می باشد. از آنجایی که فولاد 1.3355 یک فولاد تنگستنی می باشد در مقابل حرارت نیز مقاوم است. بنابراین در اثر فرسایش در سرعت های بالا که دمای قطعه بسیار بالا می رود. تغییر شکل نمی یابند و عملکرد خود را به خوبی حفظ می کنند. کاربردهای فولاد 1.3355 عبارتند از: ابزارهای شکل دهی، ابزارهای خانکشی، تیغه اره دوار، ابزار دستی کار با چوب، تیغه فرز و ابزار شکل دهی سرد.

در ساخت مته ها، تیغه ها، سوهان، اسکنه تراش، ابزار جوشکاری برش شیشه گرم ،غلتک های پیچ بری در کار گرم

قیمت فولاد تندبر 3355 تابع عوامل مختلفی است. این فولاد یک فولاد آلیاژی است و قیمت عناصر آلیاژی بر روی آن بسیار تأثیرگذار است. همچنین به علت وارداتی بودن این فولاد نوسانات قیمت ارز بر قیمت فولاد تندبر تأثیر مستقیم دارد.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان ))
صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

کاربردهای فولاد 1.3355

 

فولاد 3355-میلگرد 3355-تسمه 3355-فولاد تندبر 3355-فولاد ابزار3355-فولاد T1-فولاد HSS

کاربردهای فولاد 1.3355 

مهم ترین کاربردهای فولاد تندبر 1.3355 عبارتند از:

ساخت بسیاری از ابزارهای برشی
ساخت قالب های پلاستیکی با مقاومت در برابر سایش و پیچ ها
تیغه های اره های دوار
تیغه های فرز
ابزارهای شکل دهی
ابزاهای کارهای چوبی
ابزار خان کشی
ابزارهای شکل دهی سرد مانند اکستروزن سرد و مهره ها

 

فولادهای پر کاربرد ضد زنگ در ایران

 

فولادهای پر کاربرد ضد زنگ در ایران

فولاد 4401 -ورق 4401-میلگرد 4401-لوله 4401-فولاد زنگ نزن آستنیتی (نگیر)-استنلس استیل

1.4000 با استاندارد DINX6Cr13

فولاد بگیر (زنگ نزن فریتی) 1.4000 دارای خصوصیت عملیات حرارتی و قابلیت مغناطیسی خوب می باشد. و از آن می توان در ساخت پره توربین های بخار و قطعات تحت تنش زیاد در محیط های آب و بخار استفاده نمود.

1.4057 با استاندارد DIN X17CrNi16-2

فولاد بگیر (زنگ نزن فریتی) 1.4057 با خصوصیت عملیات حرارت پذیر، عملیات مغناطیسی. استحکام بالا و مقاومت به خوردگی فولادی مناسبت برای استفاده در صنایع شیشه و بلور، صنایع سد سازی. صنایع صابون سازی، صنایع غذایی، سازه های دریایی، اجزاء هواپیما، صنایع قالب سازی. صنایع ماشین سازی و شفتینگ قطعات ساختاری با استحکام بالا و همچنین قالب با قابلیت پولیش خوب برای تولید لنز می باشد.

 

1.4301

فولاد زنگ نزن آستنیتی (نگیر) 1.4301 غیر قابل عملیات حرارتی و غیر مغناطیسی بوده. اما قابلیت جوشکاری به همراه قابلیت پرداخت بالا و کشش عمیق را دارا می باشد. از این فولاد می توان برای ساخت انواع لوازم خانگی، تجهیزات خار و بار، صنایع کارد و چنگال، تجهیزات پزشکی. صنایع خودرو و تجهیزات بهداشتی استفاده نمود.

1.4305 با استفاده DIN X8CrNIS 18-9

فولاد زنگ نزن آستنیتی (نگیر) 1.4305 دارای مقاومت به خوردگی بالا. دارای قابلیت پرداخت بالا در کشش عمیق، ماشین کاری خوب و با قابلیت جوشکاری بوده. که غیر قابل عملیات حرارتی و غیر مغناطیسی نیز می باشد. از این فولاد برای ساخت در قطعات مهندسی خوش تراش که تحت خورندگی بالا قرار دارند. پیچ و مهره صنایع شیمیایی و موارد مشابه دیگر که نیاز به ماشین کاری خوب دارند استفاده نمود.

اسامی فولادها

1.4000-X6Cr13

1.4006 – X12Cr13

1.4016 – X6Cr17

1.4021 – X20Cr13

1.4028 – X30Cr13

1.4057 – X17CrNi16-2

1.4301 – X5CrNi18-10

1.4305 – X8CrNis 18-9

1.4305 – X2CrNi 19-11

1.4401 – X5CrNiMo 17-12-2

1.4404 – X2CrNiMo 17-13-12

1.4541 – X6CrNiTi 18-10

1.4571 – X6CrNiMoTi 17-12-2

فولاد 4401

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

تأثیر فلز پرکننده بر خواص اتصال غیر مشابه آلیاژ فولادی 4130 به فولاد زنگ نزن 316L پارت اول

 

فولاد 4130 - ورق 4130 - تسمه 4130- گرد 4130- فولاد حرارتی-فولاد ضد خوردگی-فولاد ابزار

تأثیر فلز پرکننده بر خواص اتصال غیر مشابه آلیاژ فولادی 4130 به فولاد زنگ نزن 316L

در این پژوهش، اتصال غیر مشابه فولاد کم آلیاژ 4130. به فولاد زنگ نزن 316L به روش جوشکاری قوسی تنگستن – گاز. مورد بررسی قرار گرفت. از دو فلز پر کننده ERNiCr-3 و فولاد زنگ نزن ER309L به این منظور استفاده شد. پس از جوشکاری، ریزساختار مناطق مختلف هر اتصال شامل فلز جوش. مناطق متأثر از حرارت و فصل مشترک ها با استفاده از میکروسکوپ نوردی و میکروسکوپ الکترونی روبشی (SEM) نشان داد. که در آزمون ضربه، شکست نمونه ها به صورت نرم می باشد. در آزمایش کشش نمونه جوش داده شده با سیم جوش ER309L از فولاد پایه 316L دچار شکست شد.

اما نمونه جوش داده شده با سیم جوش ERNiCr-3 از محل جوش دچار شکست شد. بررسی ها نشان دهنده وجود ساختار دندریتی در فلزات جوش پایه نیکلی بود. ریز ساختار فلز پرکننده فولاد ER309L به صورت سلولی – دندریتی بوده. و به دلیل وجود فاز فریت دلتا در نواحی بین دندریتی آستنیت زمینه. هیچ گونه ترکی در این اتصال مشاهده نشد.

 

این فولاد 4130 AISI فولادی کم آلیاژ با استحکام بالا و عملیات حرارتی پذیر می باشد. این فولاد دارای میزان کربن متوسط بوده و دارای عناصر آلیاژی نظیر کروم، مولیبدن، منگنز و دیگر عناصر می باشد. کاربرد این نوع فولادها در صنایع نفت و نیروگاه های برق می باشد. همچنین به دلیل مقاومت در برابر اکسید شدن. و استحکام بسیار خوب در درجه حرارت های بالا. در انواع مولد ها و مبدل های حرارتی کاربرد دارد. این فولاد همچنین در مخازن تحت فشار در صنایع پتروشیمی نیز استفاده می شود. این گروه فولادها به صورت نرماله، تمپر می شود و کوئنچ – تمپر می شود بکار می رود. کروم در فولاد، مقاومت به خوردگی و مولیبدن استحکام در درجه حرارت های بالا را افزایش می دهد.

 

فولاد زنگ نزن 316 پس از فولاد زنگ نزن 304 دومین فولاد زنگ نزن رایج. در بین فولادهای زنگ نزن آستنیتی است. این فولاد به فولاد زنگ نزن گرید دریایی نیز معروف است. و معمولاً شامل 16 درصد کروم، 10 درصد نیکل و دو درصد مولیبدن است. تغییر در نسبت کروم و نیکل و افزودن مولیبدن باعث مقاومت بیشتر این فولاد در مقابل خوردگی. به ویژه خوردگی ناشی از کلر می گردد. و به این دلیل برای تجهیزاتی که باید در تماس زیاد. با عوامل خورنده نظیر مواد شیمیایی حلال ها، و آب شور باشند، مناسب است. فولاد زنگ نزن 316 در صنایع مختلفی نظیر نفت، گاز، پتروشیمی، صنایع غذایی و دارویی مصارف گوناگونی دارد. از این آلیاژ برای ساخت لوله و ورق های مقاوم در محیط های اسیدی استفاده می شود. و قیمت آن نسبت به گریدهای مشابه مانند فولاد زنگ نزن 304 بیشتر است.

 

اتصال غیر مشابه فولادهای زنگ نزن به فولادهای کم آلیاژ با استحکام بالا. در صنایع مختلفی نظیر نفت، گاز، پتروشیمی، نیروگاه های حرارتی. و صنایع غذایی دارای کاربردهای فراوان می باشد. در اکثر صنایع مذکور خطوس لوله انتقال دهنده سیالات و نازل ها. از جنس فولاد زنگ نزن و مخازن و قسمت های تحت فشار سیستم. از جنس فولاد کم آلیاژ تولید می شوند. و اتصال این اجزا به روش جوشکاری انجام می گردد. و یکی از اتصالات اساسی موجود در این صنایع می باشد. با توجه به کاربرد گسترده فولادهای کم آلیاژ و فولادهای زنگ نزن در صنایع مختلف. و نیاز فراوان به اتصال این دو نوع فولاد به یکدیگر. توسعه و بهینه سازی خواص این اتصال همواره مورد نظر قرار می گیرد. در گذشته کاربرد فیلرهای مختلف در اتصال این نوع فولادها مورد بررسی قرار گرفته است.

 

پانیندرا و همکاران به بررسی خواص اتصال غیر مشابه فولادهای AISI 4140. و AISI 316 ایجادی با روش جوشکاری قوسی تنگستن – گاز (GTAW) پرداختند. در این بررسی محققان خواص اتصال را در دو حالت بدون فلز پرکننده. و به استفاده از فلز پرکننده بررسی نمودند. فلز پرکننده مورد استفاده ER309L بود. نتایج نشان داد خواص اتصال در هر دو حالت قابل قبول می باشد. جانگ و همکاران به بررسی ریزساختار و خواص مکانیکی اتصالات فولادی کم آلیاژی SA508 به فولاد 316 با روش GTAW. به وسیله فلز پرکننده ایکونل 82/182 پرداختند.

 

این نوع اتصال در راکتورهای هسته ای کاربرد دارد. در این بررسی مشاهده گردید خواص مکانیکی و ریزساختار در طول ضخامت جوش متفاوت می باشد. و در بررسی های انجام شده علت ترک های مورد ایجاد در نمونه ها، تنش پسماند تشخیص داده شد. در این راستا پژوهشی مشابه با تحقیق جانگ و همکاران توسط کیم و همکاران انجام شد. با این تفاوت که در این بررسی محققین از عملیات حرارتی پس گرم در دمای 320 درجه سانتی گراد. برای کاهش تنش پسماند استفاده نمودند. که نتایج حاصل رضایت بخش بود. ریزساختار فلز جوش به صورت دندریتی و بررسی سطح شکست، نشان دهنده شکست نرم بود.

 

در مورد روش های مختلف جوشکاری این دو نوع فولاد در قبل بررسی هایی صورت پذیرفت. آریواژگان و همکاران به بررسی خواص اتصال فولادهای AISI 4140 و AISI 304 توسط روش های GTAW، جوشکاری اصطکاکی – اعتشاشی (FSW) و جوشکاری پرتوی الکترونی (EBW) پرداختند. نتایج نشان داد که اتصال به روش EBW دارای بیشترین استحکام کششی. و روش GTAW دارای بیشترین مقاومت به ضربه می باشد.

 

در میان روش های مختلف جوشکاری ذوبی، یکی از پرکاربردترین روش ها در اتصال فلزات غیرمشابه. که در سال های اخیر مورد توجه محققین قرار گرفته است، جوشکاری GTAW می باشد. این روش دارای مزایای فراوان می باشد. که از جمله می توان به تمیز بودن جوش.کنترل نسبی میزان رقت و کم هزینه بودن این روش اشاره کرد. این روش در عین دارا بودن مزایای بسیار. در مقایسه با برخی روش ها نظیر جوشکاری پرتوی الکترونی (EBW). و جوشکاری پرتوی لیزر (LBW) دارای نقاط ضعفی می باشد. که از آن جمله می توان به عمق نفوذ کمتر. ایجاد منطقه HAZ وسیع تر و ایجاد اعوجاج در مقاطع نازک اشاره نمود.

 

در راستای بهبود خواص جوش GTAW، احمدی و ابراهیمی. به بررسی اثر فلاکس فعال در عمق نفوذ جوشکاری GTAW فولاد 316L پرداختند. که نتایج نشان دهنده افزایش عمق نفوذ و افزایش استحکام بود. چاندر و همکاران تأثیر پارامترهای فرایند جوشکاری بر چقرمگی و سختی اتصال فولادهای 4140 AISI و AISI 304. به روش جوشکاری اصطکاکی را بررسی نمودند. پارامترهای اصلی مورد بررسی در این پژوهش نیروی اصطکاکی و نیروی فورج بود. سهم هر یک از پارامترهای مذکور و اهمیت این پارامترها به روش تاگوچی تعیین گردید. که نتایج نشان داد که پارامتر نیروی اصطکاکی به خصوص در میزان چقرمگی اتصال دارای بیشترین اثر می باشد.

 

اوزدمیر و همکاران به بررسی خواص اتصال. از نظر سرعت چرخش در جوشکاری اصطکاکی فولاد AISI 304 به فولاد AISI 4340 پرداختند. جوشکاری اصطکاکی با پنج سرعت مختلف چرخش با استفاده از یک دستگاه انجام شد. مشاهده گردید استحکام کششی با افزایش سرعت چرخش افزایش می یابد.

بنابراین تحقیقات انجام شده توسط نگارندگان مقاله. تاکنون گزارشی در مورد اتصال غیر مشابه فولاد زنگ نزن آستنیتی AISI 316 L. به فولاد کم آلیاژ AISI 4130 در منابع مشاهده نشده. بنابراین در این پروژه به بررسی ریزساختار و خواص مکانیکی اتصال غیرمشابه فولاد زنگ نزن آستنیتی AISI 316 L. به فولاد کم آلیاژ AISI 4130 توسط فرایند GTAW با پرکننده های ER309L و ERNiCr-3 پرداخته شده است. نویسندگان بر این عقیده هستند. که نتایج حاصل از این پژوهش می تواند. در استفاده بهینه از این دو آلیاژ در کاربردهای صنعتی مثمر ثمر واقع گردد.

فولاد 4130

ارتباط با ما :

09121224227

09371901807

02166800251

فکس: 66800546

ارتباط با ما در شبکه های اجتماعی

 

 

https://www.instagram.com/foolad_paytakht.ir اینستاگرام

جوشکاري فولاد ضد زنگ داپلکس به روش ESAB

 قبل از جوشکاری

  • برای دستیابی به نفود خوب باید از شکاف ریشه (پایه). و زاویه اتصال کمی وسیعتر از آنچه برای فولاد ضد زنگ استاندارد استفاده می شود، استفاده کرد.
  • برای تسهیل جوشکاری ریشه زدن (پایه) از پشت سرامیک استفاده کنید.
  • اتصال و فلز پایه مجاور باید کاملاً تمیز شود.
  • فقط باید از برس ضد زنگ برای تمیز کردن استفاده شود.
  • پیش گرمایش به طور معمول توصیه نمی شود.
  • همیشه باید از الکترودهای خشک استفاده شود.

ESAB می تواند الکترودهای داپلکس ار در ESAB VacPac تهیه کند.

یک سیستم مؤثر برای اداره الکترودهای جوشکاری است.

مصرف متناسب دو بسته در هنگام یک شیفت کاری عادی است.

این روشهای خشک کردن مجدد پر هزینه را از بین می برد.

شرکت خشکه و فولاد پايتخت (( مديريت : جواد دلاکان )) صنعتگران عزيز، افتخار داريم. که سي سال تجربه گرانبهاي خويش را در زمينه عرضه انواع ورق آلياژي. و انواع فولاد آلياژي براي خدمت رساني به شما هموطنان کشور عزيزمان ايران ارائه مي دهيم. پيشاپيش از اينکه شرکت خشکه و فولاد پايتخت را جهت خريد خود انتخاب مي نماييد سپاسگزاريم.ارتباط با ما:
09121224227
09371901807
تلفن: 02166800251
فکس: 66800546

ارتباط با ما در شبکه هاي اجتماعي

https://t.me/foolad_paytakht تلگرام

 

 

https://www.instagram.com/foolad_paytakht.ir اينستاگرام


نیکل – فولاد نیکل

 نیکل : Nickel به عنصر ۲۸ جدول تناوبی, فلزی مقاوم- چکش‌خوار- براق با ساختار بلورین و مکعبی‌ شکل برنگ سفید و نقره‌ای است. این عنصر پنجمین عنصر شایع روی زمین است. و بطور گسترده‌ای در پوسته و هسته ی زمین شکل می‌گیرد.

کاربرد

سرانه مصرف نیکل در دنیا در کاربردهای مختلف به این صورت است: ۷۰٪ ساخت فولادهای زنگ ‌نزن، ۹٪ ساخت آلیاژهای غیرآهنی، ۸٪ در آبکاری، ۹٪ آلیاژهای فولاد و ریخته‌گری، ۳٪ ساخت باتری و ۱٪ سایر مصارف.

مشخصات

این عنصر نوعی فلز با عدد اتمی ۲۸ و نماد علمی Ni در گروه VII و در دوره چهارم جدول تناوبی جای دارد. جرم اتمی ۵۸٫۷۱، ظرفیتها ۲ و۴. دارای پنج ایزتوپ پایدار است.

خواص

این آلیاژ یک فلز با خواص شیمیایی و فیزیکی فوق‌العاده است که باعث استفاده از آن در صدها هزار کاربرد مختلف شده است.

این عنصر درجه ذوب بالایی داشته (۱۴۵۳ درجه ی سانتیگراد)، در مقابل خوردگی و اکسید شدن بسیار مقاوم است.بسیار چکش خوار بوده و به راحتی با سایر عناصر آلیاژ می‌شود. در دمای اتاق مغناطیسی بوده و می‌توان به راحتی در آبکاری فلزات از آن استفاده کرد. این فلز هم چنین خاصیت کاتالیزوری داشته و می‌توان آن را صددرصد بازیافت کرد.

 

معمولترین حالت اکسیداسیون نیکل، ۲+ است و این در حالی است که نیکل ۳+ و ۱+ نیز به ندرت مشاهده می‌شوند.

از نظر خواص مغناطیسی و فعالیت شیمیایی شبیه به آهن و کبالت است. کانی‌های اصلی این عنصر عبارتند از پنتلاندیت- پیروتیت) سولفیدهای نیکل و آهن) و گارنییریت (سیلیکات نیکل و منیزیم) هستند.

این عنصر یکی از اجزای اصلی تشکیل‌دهنده شهابسنگ به‌شمار می‌آید. شهاب‌سنگ‌های آهن و سیدریت شامل آلیاژهای آهن حدود ۵ تا ۲۰ درصد از این نوع عنصر را دارا میباشند. نیکل تجاری به اشکال پنتلاندیت و پیروتیت است. که این معادن در استان انتاریوی کشور کانادا یافت می‌شود. که این ناحیه حدود ۳۰ درصد از کل نیکل دنیا را تأمین میکند. دیگر معادن این عنصر در استرالیا –کادونیا-کوبا – اندونزی و در مناطق دیگر میباشد.

 

این عنصر رسانای جریان برق میباشد. و سطح آن براق و صیقلی است. این عنصر از گروه عناصر آهن و کبالت است و آلیاژهای آن قیمت‌های بالایی دارند.

امروزه این عنصر ارزش ویژه ای، به خصوص در صنعت آلیاژسازی پیدا کرده‌است. نزدیک به ۶۸٪ این عنصر تولید شده در جهان برای ساخت فولادهای زنگ نزن(ضد زنگ) استفاده میگردد. نزدیک به ۱۰٪ دیگر آن در ساخت آلیاژهای پایه-نیکل و پایه-مس، ۷٪ در ساخت فولادهای آلیاژی، ۳٪ در صنعت ریخته‌گری، ۹٪ در صنعت آبکاری ، و ۴٪ در سایر صنایع شامل صنعت رو به پیشرفت باتری‌ها (شامل باتری خودروهای برقی استفاده می‌شود.

 

از این عنصر برای ساخت شیشه‌های برنگ سبز استفاده می‌شود. صفحات نیکلی می‌تواند نقش محافظت‌کننده برای دیگر فلزات را داشته باشد. نیکل هم چنین کاتالیزور برای هیدروژن دار کردن روغن های گیاهی است. هم چنین صنعت سرامیک و ساخت آلیاژی از آهن و نیکل که خاصیت مغناطیسی دارد. و باتری‌های قوی ادیسون کاربرد دارد.

از ترکیبات مهم نیکل می‌توان سولفات و آکسید را نام برد.

از عنصر بصورت طبیعی مخلوطی از پنج ایزوتوپ پایدار است. هم چنین ۹ ایزوتوپ ناپایدار دیگر نیز شناخته شده‌است. نیکل هم بصورت فلز و هم بصورت ترکیب محلول میتواند وجود داشته باشد. بخار سولفید نیکل سرطان‌زاست که هنگام استفاده از آن باید دقت لازم را به عمل آورد.

تاریخچه

اولین بار این عنصر در سال ۱۷۵۱ توسط شیمی‌دان سوئدی اکسل کرونستد شناسایی شد. در قرن نوزدهم بدلیل استفاده از این عنصر در آبکاری و ساخت آلیاژها منجمله «نقره نیکل» (نقره آلمانی) که نیکل را با روی و مس آلیاژ می‌کردند، اهمیت پیدا کرد. این آلیاژ فقط به دلیل رنگ آن نامگذاری شده بود و هیچ نقره ای در داخل آن وجود نداشت.

 

معدن‌کاران قرن ۱۵ آلمانی یک سنگ معدنی قهوه‌ای-قرمز پیدا کرده بودند که تصور می‌کردند حاوی مس است. آنها این سنگ معدنی را Kupfernickel که به معنای مس شیطان بود نامگذاری کرده بودند. چرا که نمی‌توانستند مس را از آن استخراج کنند. نام نیکل از کلمه ساکسونی Kupfernickel به معنای مس شیطان گرفته شده‌ است.

در سال ۱۸۵۷ برای اولین بار در آمریکا سکه‌ها با آلیاژی از مس و نیکل ساخته شدند. این سکه‌ها از جنس نیکل خالص نبودند و اولین بار در ۱۸۸۱ در سویس سکه‌هایی از جنس نیکل خالص استفاده شد.

 

فولادهای زنگ‌نزن در قرن بیستم شناخته و ساخته شدند. و نقش مفید استفاده از نیکل در بسیاری از گریدهای مختلف این فولادها کاملاً شناخته شده‌است. آلیاژهای پایه-نیکل دارای مقاومت در برابر خوردگی بسیار عالی بوده و می‌توانند در دمای بالا مقاومت کنند، که این خاصیت آنها را برای کارخانه‌های شیمیایی بسیار مناسب می‌سازد و همچنین امکان اجرایی کردن ساخت موتور جت را فراهم می‌کند.

این آلیاژ یک فلز با خواص شیمیایی و فیزیکی فوق‌العاده است که باعث استفاده از آن در صدها هزار کاربرد مختلف شده است.

 

این عنصر درجه ذوب بالایی داشته (۱۴۵۳ درجه ی سانتیگراد)، در مقابل خوردگی و اکسید شدن بسیار مقاوم است.بسیار چکش خوار بوده و به راحتی با سایر عناصر آلیاژ می‌شود. در دمای اتاق مغناطیسی بوده و می‌توان به راحتی در آبکاری فلزات از آن استفاده کرد. این فلز هم چنین خاصیت کاتالیزوری داشته و می‌توان آن را صددرصد بازیافت کرد.

معمولترین حالت اکسیداسیون نیکل، ۲+ است و این در حالی است که نیکل ۳+ و ۱+ نیز به ندرت مشاهده می‌شوند.

نیکل-فولاد ضد خوردگی-مقاوم بالا-فولاد ضد زنگ-زنگ نزن-فولاد نیکل-https://www.foolad-paytakht.ir/

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

انواع ورق استیل

 

انواع ورق استیل

در طبقه بندی این محصول، ورق ها بر اساس آلیاژ تقسیم بندی می شوند. استیل ها چند سری دارند. از جمله سری 300 و 400 اما معروف ترین و رایج ترین در بازار سری 300 است. که ضد زنگ می باشد و به انواع مختلفی مانند 304,305,321,316,347 تقسیم می شود. که در بین همه موارد ورق استیل 304 از سایرین پر مصرف تر است.

اما استیل سری 400 بیشتر در زندگی روزمره و وسایل کوچک استفاده می شود. مثلاً استیل 410 در برابر سایش مقاوم است. اما نسبت به خوردگی مقاومت کمی دارد. در استیل 420 می توانیم آن را پولیش کنیم و همین قابلیت باعث می شود که برای کارد و چنگال و قاشق استفاده شود. استیل 430 نیز برای تزئینات و دکوراسیون استفاده می شود. مثلاً برای طراحی های داخلی خودروها و منازل استفاده میشوند. این فلز قابلیت شکل پذیری خوبی دارد. و به خاطر عناصری که در این ورق است قیمت ارزانتری از استیل سری 300 دارد.

 

  • ورق استیل 304
  • استیل 430
  • ورق استیل 420
  • ورق استیل 309
  • استیل 310
  • ورق استیل 316
  • استیل 201
  • ورق استیل رنگی
  • و ورق استیل طرح دار
  • شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
    ارتباط با ما:
    ۰۹۱۲۱۲۲۴۲۲۷
    ۰۹۳۷۱۹۰۱۸۰۷
    تلفن: ۰۲۱۶۶۸۰۰۲۵۱
    فکس: ۶۶۸۰۰۵۴۶

    ارتباط با ما در شبکه های اجتماعی

    https://t.me/foolad_paytakht تلگرام

     

     

    https://www.instagram.com/foolad_paytakht.ir اینستاگرام

A387 – ورق A387- فولاد A387-فولاد ضد زنگ

 

A387 – فولاد A387-صفحه ی فولادی CL2-صفحه فولادی CL1فولاد ضد زنگ – فولاد ضد خوردگی – فولاد حرارتی- ASTM

ASTM A387 CL1- صفحه فولاد CL2- ورق ASTM A387-ورق مخزنی – ورق مخازن تحت فشار- ورق ضد خوردگی

ASTM A387 CL1، CL2 فولاد درجه یک نوع فولاد است که با ترکیب cr، Mo.، Cr-Mo میباشد. که عمدتا برای مخازن تحت فشار بالا و بالا استفاده میگردد. گرید فولاد A387 gr 12 CL1 / A387gr 12 CL2 مطابق با استاندارد ASTM ترکیبات شیمیایی. و خواص مکانیکی صفحات فولادی ASTM A387CL1 / A387CL2.

 

فولاد A387 CL1، CL2 ورق فولاد آلیاژی کروم-مولیبدن را برای دیگهای جوش داده شده. و مخازن تحت فشار برای فعالیت هایی. با درجه حرارت بالا طراحی و تولید میشوند.

این نوع از فولاد با گریدها و مشخصات و نمرات. 2، 12، 11، 22، 22L، 21، 21L، 5، 9 و 91 ساخته. و به بازار تقاضا در بخش صنعت عرضه میشود.

 

این نوع فولاد با روش حرارت متناوب و باز پخت تولید میشود. این نوع فولاد A387 gr11 / 12 CL1 / 2 با آنالیز و انجام پروسه حرارت ایجاد میشود. و مطابق با الزامات و عناصر شیمیایی موجود آن با نام های کربن.، منگنز، فسفر، گوگرد، سیلیکون، کروم، مولیبدن، نیکل، وانادیوم.، کلومیمیم، بور، نیتروژن، آلومینیوم، تیتانیوم ، و زیرکونیوم نوع گرید آن مشخص میگردد.

این نوع فلز برای ارزیابی نوع مقاوم آن تحت آزمایشات تنش قرار میگیرد . و همچنین با مقادیر مورد نیاز هر بخش از صنعت. میزان استحکام کششی و میزان مقاومت و ضخامت آن کنترل میگردد.

ارزیابی ریز ساختار و خواص مکانیکی اتصال غیر همسان فولاد A387-gr.11 و A240-tp-.316

اتصال غیر همسان فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی.- در گذشته بصورت وسیعی در صنایع بکار گرفته شده است. دو فولاد زنگ نزن آستنیتی A240-tp.316 .و فولاد کم آلیاژ فریتی A387-gr.11 توسط جوشکاری قوسی تنگستن. تحت گاز محافظ با دو جریان ثابت و پالسی و با استفاده از دو نوع فلز. پرکننده ی Er309l و Ernic-3 بهم جوش داده شدند.

 

پس از آزمونهای متالوگرافی آزمون تعیین ترکیب شیمیایی، ریز سختی سنجی، کشش و ضربه، مشخص گردید .که بطور کلی، نمونه های جوشکاری شده توسط جریان پالسی – بدلیل گرمای ورودی کمتر. و ایجاد اختلاط بیشتر در حوضچه ی جوش، ضمن کاهش وقوع پدیده های نا مطلوب متالوژیکی. مانند تشکیل منطقه ی کمبود از کربن، منطقه ی انتقالی و منطقه ی مخلوط نشده، بهبود. خصوصیت مکانیکی اتصال را در بر داشتند. نتایج نشان دادند که فلز پر کننده ی پایه نیکل، بدلیل محدود کردن نفوذ کربن.به درون حوضچه ی جوش و کاهش احتمال تشکیل منطقه ی. انتقالی نسبت به فلز پرکننده ی دیگر، مطلوب تر است.

در گذشته اتصال دهی ناهمجنس فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی بطور گسترده ایی در مولدهای بخار، مبدل های حرارتی و تجهیزات لوله کشی در نیروگاه ها، پالایشگاه ها و صنایع پتروشیمی بکار رفته است. بطور مثال : در نیروگاههای با سوخت فسیلی، لوله های مرحله ی پیشگرم دیگهای بخار از نوع و جنس فولادهای کم آلیاژ هستند.

 

و لوله های بخش فوق گرمایش بدلیل دما و فشار کاری بسیار بالاتر، از نوع و جنس. فولاد زنگ نزن انتخاب میشوند. این انتخاب ، سبب صرفه جویی چشمگیر در هزینه ها خواهد شد. این اتصال به آسانی با اغلب روشهای مرسوم به خصوص جوشکاری قوسی تنگستن تحت گاز محافظ gtaw. و جوشکاری قوس الکترود روپوش دار smaw تولید شده است. مورد دیگر برای کاربرد این نوع اتصال، روکش کاری فولادهای کربنی یا کم آلیاژ. با فولادهای زنگ نزن آستنیتی یا آلیاژ پایه نیکل است. با این روش، میتوان مقاومت به خوردگی مخزن های از جنس فولاد کربنی. را با صرف کمترین هزینه تا مقدار قابل توجهی بهبود بخشید.

فرآیند اتصال بین فولاد زنگ نزن آستنیتی و فولاد کم آلیاژ فریتی، چند پدیده ی متالوژیکی قابل توجه به همراه دارد. یکی از پدیده هایی که در هنگام جوشکاری، عملیات حرارتی پس از جوشکاری و در حین قرارگیری در شرایط کاری برای این نوع اتصال رخ میدهد، انتقال کربن از فولاد کم آلیاژ به سمت ناحیه ی جوش میباشد.

 

این پدیده موجب ایجاد یک منطقه ی کمبود از کربن Carbon Depleted Zone,CDZ در ناحیه ی متأثر از حرارت در فولاد کم آلیاژ و در مجاورت مرز ذوب میشود. تحقیقات نشان داده اند که این منطقه ی کمبرد از کربن احتمالاً در معرض ترک خوردگی خزشی قرار خواهد گرفت. پروسه ی انتقال کربن، شامل انحلال کاربیدها در فولاد فریتی و نفوذ کربن بدرون حوضچه ی جوش میگردد. نیروی محرکه برای این پروسه، وجود شیب غلظتی کربن یا شیب اکتیویته ی کربن بین فولاد فریتی کم کروم و فلز جوش آستینی پر کروم است.

 

در اتصال های جوش بین دو فولاد نا همسان آستینی – فریتی، وجود منطقه ی انتقالی یا اختلاط جزیی درون حوضچه ی جوش و در مجاورت فولاد فریتی گزارش شده است. در این منطقه، اختلاط بین فلز جوش و فلز پایه ناقص است. و ترکیت شیمیایی آن شیئ از ترکیب فلز پایه تا فلز جوش است. پهنای منطقه ی انتقالی مطابق با نتایج آزمونهای انجام گرفته، بین 20 الی 100 میکرون و تابع عواملی ماننند ترکیب شیمیایی و میزان حرارت ورودی است.مرزی که این منطقه را از حوضچه جدا میکند. با مرز ذوب موازی است. و بعنوان مرز نوع II شناخته میشود. شناخت این ناحیه، در جوشهای نا همسان فریت به آستنیت بسیار اهمیت دارد. زیرا طبق آنچه پیش تر گفته شد . این منطقه یکی از مناطقی است که در معرض وقوع آسیب های زیادی میباشد.

a387-فولاد ضد خوردگی-فولاد ضد سایش- فولاد ضد زنگ-فولاد زنگ نزن-www.foolad-paytakht.ir

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

تأثیر فلز پرکننده بر خواص اتصال غیر مشابه آلیاژ فولادی 4130 به فولاد زنگ نزن 316L پارت دوم

 

مواد و روش تحقیق

مواد مصرفی

در این پژوهش از ورق فولاد کم آلیاژ AISI 4130 و فولاد زنگ نزن آستنیتی AISI استفاده شد. آنالیز کوانتومتری جهت تعیین دقیق ترکیب شیمیایی ورق های خریداری شده انجام گردید. ترکیب شیمیایی فلزات پایه در جدول 1 ارائه شده است. جهت اتصال فلزات پایه از دو فلز پرکننده فولاد زنگ نزن ER309L و اینکونل ERNiCr-3 استفاده شد. در تمامی موارد از سیم جوش هایی با قطر 2/4 میلی متر جهت پاس ریشه. و در ادامه جهت رونشانی پاس بعدی استفاده شد.

به منظور ارائه دقیق ترکیب شیمیایی سیم جوش های به کار گرفته شده. از اطلاعات درج شده توسط کارخانه سازنده استفاده شد. در انتخاب فلزات پرکننده در این پژوهش علاوه بر ترکیب شیمیایی. پارامترهای دیگری مانند خواص مکانیکی حاصله، پایداری حرارتی، مقاومت به خوردگی، ضریب انبساط حرارتی. در دسترس بودن و هزینه ها مد نظر قرار گرفت. بر همین اساس از استانداردهای AWS , AWS A5/9 A5/14 و مشخصات ارائه شده از طرف تولید کنندگان استفاده گردید.

فولاد 4130

آماده سازی نمونه ها و طراحی اتصال

در این پژوههش ده ورق از جنس فولاد زنگ نزن آستنیتی AISI 316L. و فولاد AISI 4130 با ابعاد 6×70×300 میلی متر. به عنوان فلزات پایه تهیه شد و بر اساس استاندارد AWS D1/1 به صورت جناغی یک طرفه لبه سازی گردید. زاویه لبه هر ورق در ناحیه شیار جوش 25 درجه. و در مجموع 50 درجه مطابق شکل (1) در نظر گرفته شد. عملیات لبه سازی توسط ماشین فرز و با کیفیت بالا انجام گردید. سپس مراحل سمباده زنی، چربی زدایی و تمیزکاری قطعات جهت انجام فرایند جوشکاری انجام شد.

جوشکاری نمونه ها

اتصال ورق ها با استفاده از سیم جوش های ER309L. و ERNiCr-3 به قطر 2/4 میلی متر و به روش GTAW. توسط دستگاه با مدل ESAB DTA 300 بدون پیش گرم کردن نمونه ها. و با قطبیت DCEN به صورت 1G انجام گردید. الکترود مصرف نشدنی مورد استفاده، الکترود تنگستنی حاوی دو درصد توریم

فولاد 4130

به قطر 2/4 میلی متر بود. گاز آرگون با خلوص 99/9 درصد با فشار 4 الی 5 بار به عنوان گاز محافظ استفاده شد. دمای بین پاسی 100 درجه سانتی گراد در نظر گرفته شد. تا تنش های پسماند ناشی از انقباض و سرد شدن فلز جوش به حداقل مقدار ممکن برسد. در هر پاس مقادیر شدت جریان، ولتاژ و سرعت جوشکاری اندازه گیری و کنترل شد (جدول 2).

بررسی ریزساختار

به منظور مطالعه و بررسی ریزساختار مناطق مختلف در فلزات پایه. فلز جوش و منطقه متأثر از حرارت (HAZ)، و همچنین تحولات ریزساختاری. از روش متالوگرافی توسط میکروسکوپ نوری با بزرگ نمایی مختلف استفاده گردید. بدین صورت که ابتدا نمونه ها توسط اره نواری در ابعاد 15× 30 میلی متر بریده شد.

سپس نمونه ها توسط دستگاه های نیمه اتوماتیک سنباده و پولیش، طبق استاندارد ASTM E3-11 آماده سازی گردید. پس از انجام فرایند آماده سازی، عملیات میکرو اچ نمونه ها. توسط محلول های اچ نایتال (1الی 5 میلی لیتر نیتریک اسید و 95-99 میلی لیتر اتیل الکل). و گلیسرژیا (سه بخش گلیسرول، 5-2 بخش کلرید اسید. یک بخش استیک اسید) و محلول اچ رنگی براها. (5 گرم تیو سدیم سولفید + 3 گرم پتاسیم متابیو سولفید+ 1000 میلی لیتر آب). طبق استاندارد 2015- ASTM E407 انجام شد.

ارزیابی خواص مکانیکی

جهت بررسی خواص مکانیکی اتصال، برای تعیین استحکام کششی جوش از آزمون کشش طبق استاندارد ASTM E8. توسط دستگاه کشش مدل 4486-INSTRON استفاده شد. مشخصات نمونه برای آزمون کشش طبق استاندارد در شکل (2) نشان داده شده است. جهت تعیین میزان انرژی ضربه از آزمون ضربه شارپی استفاده شد. بدین صورت که از فلز جوش، نمونه هایی با ابعاد 6×10

جهت بررسی خواص مکانیکی اتصال، برای تعیین استحکام کششی جوش از آزمون کشش طبق استاندارد ASTM E8. توسط دستگاه کشش مدل 4486-INSTRON استفاده شد. مشخصات نمونه برای آزمون کشش طبق استاندارد در شکل (2) نشان داده شده است. جهت تعیین میزان انرژی ضربه از آزمون ضربه شارپی استفاده شد. بدین صورت که از فلز جوش، نمونه هایی با ابعاد 6×10×55 میلی متر. به گونه ای که نقطه اتصال در مرکز نمونه قرار گیرد تهیه شد.

 

مطابق شکل (3) شیاری به عمق یک میلی متر. و با زاویه 45 درجه بر روی نمونه در فلز جوش ایجاد شد. این آزمون توسط دستگاه سنتام مدل SIT 300 در دمای محیط انجام شد. جهت انجام آزمون های کشش و ضربه، از هر قطعه 3 نمونه برای هر آزمون طبق مشخصات بالا تهیه گردید. همچنین ریزسختی سنجی ویکرز بر روی نمونه ها در راستای پهنای جوش، در سطح مقطع برش عرضی نمونه ها. مطابق با استاندارد ASTM E-92، انجام شد. تصاویر سطح مقطع شکست نمونه های آزمون کشش و ضربه. به وسیله میکروسکوپ الکترونی روبشی از نوع VARIABLE PRESSURE SEM – (XMU & LMU) مورد بررسی قرار گرفت.

نتایج بحث

ریزساختار فلزات پایه

شکل (4) تصویر میکروسکوپی نوری از ریز ساختار فولاد 4130 را نشان می دهد. ساختار شامل بینیت، فریت و نواحی پرلیت می باشد. این آلیاژ معمولاً در حالت آنیل شده یا تمپر شده جوشکاری می گردد. مگر اینکه هدف تعمیر قطعه باشد که در این حالت آنیل یا تمپر قبل از جوشکاری عملی نیست. با انجام عملیات آنیل علاوه بر یکنواختی در ترکیب شیمیایی. در اثر وقوع فرایند تبلور مجدد، ساختاری با دانه های هم محور ایجاد می شود. و با افزایش زمان آنیل، دانه ها فرصت رشد یافته. و در نهایت ساختاری شامل دانه های هم محور نسبتاً بزرگ به وجود می آید.

 

تصویر میکروسکوپی نوری از ریزساختار فولاد زنگ نزن آستنیتی 316L در شکل (5) آورده شده است. ریزساختار دارای زمینه آستنیتی بوده و از دانه های هم محور تشکیل شده. و همچنین مرزهای دوقولویی آنیل در سرتاسر ساختار به چشم می خورند. چنین ساختاری نتیجه فرایند آنیل پس از عملیات نورد است. این عملیات به منظور بهبود خواص خوردگی و شکل پذیری آلیاژ انجام می گردد.

همچنین طی فرایند آنیل، اکثر رسوبات ایجاد شده. در فرایند تولید فولاد که طی عملیات نورد دچار تغییر شکل شده اند حذف می گردند. در شکل (5) وجود رشته فریت دلتا کاملاً مشخص می باشد. هرچند که مقدار این فاز در ساختار خیلی زیاد نیست. وجود فریت دلتا روند به وجود آمدن فاز سیگما در آلیاژ را، پس از قرار گرفتن طولانی مدت. و محدوده دمایی 600 تا 900 درجه سانتی گراد تسریع می کند. وجود فاز ترد سیگما باعث کاهش انعطاف پذیری و چقرمگی آلیاژ خواهد شد.

میزان رقت فلز جوش

جهت تعیین میزان رقت ابتدا از هر نقطه نمونه ای با مشخصات یک نمونه متالوگرافی تهیه. و سپس منطقه جوش ماکرو اچ گردید. سپس مساحت منطقه جوش محاسبه شد .و با مقایسه این مساحت و مساحت سطح مقطع فرضی لبه سازی انجام شده میزان رقت محاسبه گردید. میزان رقت در هر دو نمونه به طور تقریبی شامل 60 الی 65 درصد فلز پرکننده. و مابقی فلز پایه می باشد.

در نمونه جوشکاری شده توسط ERNiCr-3 به علت میزان بالای نیکل در فلز پرکننده و همچنین میزان قابل توجه این عنصر در فلز پایه 316 مطابق جدول (1)، این میزان رقت اثری در تغییر ساختار قابل پیش بینی جوش ندارد. در مورد نمونه جوش داده شده توسط ER309L، با در نظر گرفتن میزان عناصر آلیاژی در فلزات پایه. به خصوص فولاد 316 مطابق جدول (1) و طبق محاسبات میزان رقت عناصر، میزان عناصر به گونه ای است. که طبق نمودار شیفلر، جوش در همان محدوده فازی ER309L قرار دارد.

ریزساختار فلز جوش

یکی از مواد پرکننده مورد استفاده برای اتصال غیرمشابه در این تحقیق اینکونل 82 (ERNiCr-3) می باشد. ساختار دانه بندی فلز جوش مربوط به این فلز پرکننده در شکل (6) مشخص است. با توجه به شکل (6)، ریزساختار مطابق انتظار کاملاً آستنیتی بوده. و از دانه های تقریباً هم محور متشکل است. درون دانه ها، ساختار دندریتی – سلولی ساختار غالب می باشد. و بازوهای دندریت های هم محور نیز در برخی از دانه ها وجود دارند. جهت گیری رشد دندریت ها در هر دانه متفاوت است. و در واقع یک نوع رشد رقابتی در ساختار قابل مشاهده است. در شکل (6) رسوباتی نمایان هستند. که پس از انجام ارزیابی به روش طیف سنجی تفریق انرژی EDs مطابق شکل (7). این رسوبات غنی از نیوبیوم بودند.

بر اساس گزارش های مورد انتشار، تشکیل رسوبات غنی از نیوبیوم به صورت NbC در جوشکاری. با این فلز پرکننده گزارش گردید. ضریب جدایش نیوبیوم در آلیاژهای پایه نیکل کمتر از یک بوده. و در نتیجه این عنصر تمایل زیادی به جدایش در مناطق بین دندریتی دارد. علاوه بر این حضور سایر عناصر آلیاژی، قابلیت انحلال این عنصر در نیکل را کاهش می دهد.

 

فلز پرکننده دیگری که در این تحقیق مورد استفاده قرار گرفت فلز پرکننده ER309L بود. به طور کلی نوع انجماد در فولادهای زنگ نزن آستنیتی. به عواملی همچون ترکیب شیمیایی و فاکتورهای سینتیکی. مانند سرعت سرد شدن بستگی دارد. مهمترین عامل، مقدار کروم و نیکل معادل و نسبت Creq/Nieq در ترکیب شیمیایی است. همچنین با توجه به نمودار شیفلر که برای فرایندهای غیرتعادلی جوشکاری طراحی گردید.

ساختار مورد حاصل آستنیتی-فریتی خواهد بود. مطابق شکل (8) ترکیب این فلز جوش به نحوی است. که در بخش غنی از نیکل و و در سمت راست مثلث یوتکتیک سه فازی قرار می گیرد. و بنابراین فاز اولیه در انجماد آستنیت می باشد. حالت انجماد در این شرایط شامل فریت در بین دندریت ها. یا سلول های آستنیت و یا به صورت آستنیت اولیه همراه با فریت به عنوان فاز دوم (AF) خواهد بود. در ساختار مورد حاصل مطابق شکل (9)، فریت دلتا نمایان است.

 

در منطقه ای در مرکز حوضچه مذاب نرخ سرد شدن به اندازه ای پایین می باشد. که زمان کافی برای جدایش عناصر پایدار کننده فریت، ایجاد شده و در مناطق بین دندریتی فریت تشکیل می شود. در شکل (9) سلول ها و دندریت های آستنیت به رنگ روشن و فریت دلتا. به عنوان فاز دوم با رنگ تیره در ساختار مشاهده می شود.

ساختار فلز جوش پایه نیکلی عمدتاً به صورت دندریتی. همراه با دندریت های ثانویه قابل مشاهده می باشد. در صورتی که در فلز جوش 309L دندریت های ثانویه به سختی نمایان می گردد. و در قسمت هایی از آن، ساختار سلولی وجود دارد. تفاوت در میزان تحت انجماد در جبهه انجماد به دلیل وجود عناصر آلیاژی مختلف به ویژه عناصر آلیاژی. نظیر مولیبدن و نیوبیوم می باشد. که ضریب توزیع تعادلی انجماد آنها به اندازه کافی کوچک تر از یک است.

این عامل سبب ایجاد ریزساختار دندریتی می شود. و فازهای ثانویه در مناطق بین دندریتی و بین دانه ها شکل می گیرد. علاوه بر این، اندازه ریزساختارها نیز با یکدیگر یکسان نبوده. که این پارامتر بر روی خواص جوش مانند استحکام کششی، چقرمگی و حساسیت به ترک انجمادی تأثیرگذار می باشد.

بررسی فصل مشترک جوش

در شکل (10) و (11) فصل مشترک مربوط به نمونه مورد جوشکاری توسط ER309L مشخص است. در فصل مشترک سمت AISI 4130 همان گونه که در شکل (10) نمایان است. رشد به دو صورت مسطح (رونشینی) و هم غیر مسطح قابل مشاهده می باشد. رشد مسطح به علت شیب حرارتی بالا در حوضچه جوش ایجاد می شود. در ادامه جوانه زنی و رشد به صورت سلولی و ستونی در داخل ناحیه که ذوب است نمایان است. که این ساختارها تابع شرایط انتقال حرارت و ترکیب شیمیایی می باشد. در فصل مشترک 316 (شکل (11)) تمرکز فریت در فصل مشترک به خوبی قابل مشاهده است. رشد به صورت غیر مسطح بوده و دانه ها به صورت ستونی در فصل مشترک رشد نموده اند. همچنین رشد دانه های آستنیت در HAZ قابل مشاهده است.

 

فولاد 4130

 

فصل مشترک نمونه مورد جوشکاری توسط ERNiCr-3 در دو شکل (12) و (13) آورده شده است. در فصل مشترک سمت AISI 4130 همان گونه که در شکل (12) مشخص است. رشد به صورت مسطح (رونشینی) قابل مشاهده می باشد. جوانه زنی و رشد به صورت سلولی و ستونی در داخل ناحیه که ذوب می شود مشخص می گردد. و افزایش اندازه ستون ها و سلول ها در این نمونه نسبت به نمونه مورد جوشکاری. توسط ER309L مشخص می گردد. در فصل مشترک 316 (شکل (13)) تمرکز فریت در فصل مشترک به خوبی قابل مشاهده است. علاوه بر آن یک ناحیه ترکیب نمی شود در فصل مشترک مشخص می گردد. که به احتمال زیاد به علت تفاوت زیاد در ترکیب شیمیایی بین فاز پایه و پرکننده ایجاد می شود. رشد به صورت غیر مسطح است و دانه ها به صورت سلولی در ناحیه که ذوب است رشد کردند.

نتایج آزمون کشش

بررسی نمونه های آزمایش کشش (شکل (14)) نشان داد که نمونه مورد جوشکاری با فلز پرکننده ER309L. از فلز پایه 316L دچار شکست گردید. بررسی نتایج موجود در جدول 3 نیز نشان دهنده نقطه تسلیم در محدوده 350 مگاپاسکال. و استحکام نهایی حدود 630 مگاپاسکال می باشد. نمونه مورد جوشکاری با فلز پرکننده ERNiCr-3 مطابق شکل (14) از محل جوش دچار شکست گردید. بررسی نتایج آزمون کشش در جدول 3 نشان دهنده نقطه تسلیم در حدود 370 مگاپاسکال. و استحکام نهایی در حدود 610 مگاپاسکال می باشد. این بدان معناست که ضعیف ترین مناطق در قطعات مورد جوشکاری. به ترتیب فلز پایه 316L و فلز پرکننده ERNiCr-3 می باشد. محل شکست در نمونه های مورد جوشکاری به استحکام اجزای مختلف نمونه در اتصال بستگی خواهد داشت.

 

فولاد 4130

به طور معمول فولادهای زنگ نزن آستنیتتی در شرایط کار سرد، نورد گرم و آنیل می شود جوشکاری می شوند. در اکثر موارد پس از عملیات جوشکاری، مقداری نرم شدگی. در منطقه متأثر از حرارت (HAZ) این نوع فولادها رخ می دهد. که به تبلور مجدد و رشد دانه در منطقه متأثر از حرارت (HAZ) مربوط می باشد. این تغییرات در شکل های (11) و (13) قابل مشاهده است. در نتیجه زمانی که آزمون کشش بر روی نمونه های مورد جوشکاری. با فلز یا فلزات پایه از جنس فولاد زنگ نزن آستنیتی انجام میشود. احتمال شکست نمونه در منطقه HAZ افزایش می یابد.

 

در پژوهش حاضر حضور فریت در منطقه HAZ. و در نزدیکی مرز ذوب هر دو نمونه مطابق شکل های (11) و (13) باعث افزایش استحکام گردیده. همچنین و یا به عبارت دیگر فریت به عنوان یک عامل استحکام دهنده ثانویه عمل نموده. و مقدار استحکام منطقه HAZ را افزایش می دهد و مانع از شدت نمونه ها در منطقه HAZ می گردد. این در حالی است که در مواردی که افزایش اندازه دانه های آستنیت بدون حضور فریت رخ می دهد. احتمال شکست در منطقه HAZ زیاد می باشد.

نتایج آزمون کشش نشان می دهد که از نظر خواص مکانیکی انتخاب فلز پر کننده ER309L. برای این اتصال به علت وجود فریت در ساختار فلز جوش مناسب تر بوده و دارای استحکام کافی می باشد. و اتصال مناسبی ایجاد می نماید. با بررسی دیتاها حاصل از آزمون کشش و انرژی شکست در جدول 3 می توان مشاهده نمود. چقرمگی شکست در نمونه مورد جوشکاری توسط فلز پرکننده ER309L. به میزان قابل توجهی بیشتر از نمونه مورد جوشکاری. توسط فلز پرکننده ERNiCr-3 می باشد. این مسأله را می توان به حضور فریت در ساختار جوش فلز پرکننده ER309L. و ساختار انجمادی نسبتاً متفاوت آن نسبت داد.

نتایج آزمون ضربه

در جدول 3 نتایج آزمون ضربه شارپی برای فلز جوش گزارش گردید. و نتایج انرژی شکست بالایی به میزان 105 ژول را برای فلز پرکننده ER309L نشان می دهد. این میزان انرژی ضربه نسبت به نمونه مورد جوشکاری. با فلز پرکننده ERNiCr-3 در حدود 40 ژول بالاتر می باشد.

تصاویر میکروسکوپی الکترونی روبشی مربوط به سطح شکست نمونه ضربه ER309L مورد بررسی قرار گرفت. و در شکل (15) ارائه گردید. در این شکل، خطوط سیلان کاملاً مشخص است و حالت متداوم دارد. مشاهده دیمپل ها و حفرات قیفی شکل و کروی در سطح شکست در شکل (15-الف) نشان می دهد. که نوع شکست در نمونه مورد جوشکاری با فلز پرکننده ER309L کاملاً نرم می باشد. در نمونه مورد جوشکاری با فلز پر کننده ERNiCr-3 مطابق شکل (15-ب) علاوه بر دیمپل ها صفحات تورق. در نقاطی از نمونه قابل مشاهده می گردد. که نشان دهنده شکست نیمه ترد است.

فولاد 4130

آزمون میکروسختی سنجی

پروفیل سختی معیار مناسبی برای پیش بینی ریزساختار متشکل می باشد. شکل (16) پروفیل سختی افقی از فلز پایه فولاد AISI 316L. تا فلز پایه فولاد AISI 4130 را نشان می دهد. بررسی نمودار سختی در شکل (16) نشان می دهد. دو نمونه در سمت فولاد 316، رفتار کاملاً متفاوتی از هم در منطقه جوش از خود نشان می دهند. سیم جوش ER309L باعث افزایش سختی و سیم جوش ERNiCr-3 باعث کاهش سختی میشود. علت این موضوع را می توان با عنایت به تصاویر متالوگرافی شکل (11) و (13). به تفاوت میزان فریت موجود در نمونه ها و ساختار آنها نسبت داد.

 

در سمت فولاد AISI 4130 رفتار یکسانی بر دو نمونه حاکم می باشد. و در این سمت یک روند افزایش سختی از سمت فلز پایه به سمت منطقه HAZ. در هر دو فلز پرکننده مشاهده می گردد. که این روند با عنایت به تغییر ساختار از پرلیت و بینیت به مارتنزیت که تمپر است. و بینیت در منطقه HAZ شکل (17) و (18) قابل انتظار می باشد.

در ادامه در منطقه جوش نسبت به فلز پایه 4130. و منطقه HAZ مربوط به آن کاهش سختی مشاهده می شود. که این موضوع به دیل ایجاد ساختار با زمینه آستنیتی می باشد. بازه تغییرات سختی در نمونه بین 150 تا 480 ویکرز می باشد. حداکثر میزان سختی در هر دو نمونه در منطقه HAZ فولاد AISI 4130 مشاهده می شود. که این مسأله به علت وجود مارتنزیت که تمپر است در این منطقه می باشد (شکل 17 و 18).

نتیجه گیری

نتایج حاصل از این پژوهش را می توان در بخش های زیر خلاصه نمود:

1-جوش حاصل از فلز پرکننده اینکونل 82 دارای ریزساختار کاملاً آستنیتی با دانه هایی هم محور بود. و ساختار دندریتی در آن قابل مشاهده بود.

2- رشد سلولی و دندریتی در فلز جوش ER309L همراه با فریت در ساختار مشاهده شد. ریزساختار فلز جوش به صورت زمینه آستنیتی همراه با فریت دلتا در مرز دانه های آستنیت بود.

3- آزمون ضربه نشان دهنده وقوع شکست نرم درتمامی نمونه ها بود. مقدار انرژی شکست اتصالات در فلز پر کننده 309L به میزان قابل ملاحضه ای بالاتر از اتصال با ERNiCr-3 بود. که این موضوع به دلیل وجود فریت در ساختار فلز پرکننده 309L می باشد.

4- نتایج آزمون کشش نشان داد که انتخاب فلز پر کننده ER309L برای این اتصال به علت وجود فریت بیشتر. در ساختار فلز جوش مناسب بوده و دارای استحکام کافی می باشد. چقرمگی شکست در نمونه جوش می دهند توسط فلز پرکننده ER309L. به میزان قابل توجهی بیشتر از نمونه جوش می دهند توسط فلز پر کننده ERNiCr-3 بود.

5- حداکثر میزان سختی در هر دو نمونه در منطقه HAZ فولاد AISI 4130 مشاهده شد. که این مسأله به علت وجود مارتنزیت که تمپر است. و بینیت دراین منطقه می باشد.

دانشگاه فنی و مهندی-دانشگاه اراک

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

 

فولاد هواپیما سازی- انواع فولاد در ساخت هواپیما

 

فولاد هواپیما سازی- انواع فولاد در ساخت هواپیما

فولادهایی که در ساخت هواپیما به کار برده می شوند. باید دارای مشخصات خاصی باشند که مهمترین آنها استحکام تسلیم بالاست. هرچند امروزه صدها گرید از فولاد ساخته شده است. اما همه آنها را نمی توان در ساخت هواپیما به کار برد. از طرف دیگر از فولاد تنها در بخش های خاصی از هواپیما که نیاز است. استحکام بسیار بالایی داشته باشند.

فولاد هواپیما سازی

مانند ارابه های فرود یا محل اتصال بالها به بدنه و همچنین اسلت ها یا پیش بال ها استفاده می شود. فولادهای کم آلیاژ با کربن متوسط، فولادهای پیرسازی مارتنزیتی و همچنین استنلس استیل های PH سه گروه از فولادهایی هستند. که به دلیل استحکام تسلیم بالا به طور عمده در ساخت هواپیما از آنها استفاده میشود. در این مقاله توضیحات بیشتری در خصوص فولادهای به کار رفته در صنایع هوایی خدمت شما ارائه می گردد.

فولاد آلیاژی از آهن است که حاوی کربن و یک یا چند عنصر آلیاژی دیگر می باشد. فولاد کربنی (Carbon Steel) پرکاربردترین متریالی است که برای ساخت سازه های مهندسی مورد استفاده قرار می گیرد. از فولاد کربنی تقریباً در هر صنعتی از اتومبیل سازی گرفته تا صنایع دریایی، ریلی و زیربنایی استفاده می شود.

فولاد هواپیما سازی

مصرف جهانی فولاد در حدود 100 برابر بیشتر از آلومینیوم است که رتبه دوم در بین فلزات را دارد. در تصویر زیر می توانید میزیان مصرف فلزات مختلف مانند استیل، آلومینیوم، مواد کامپوزیت و منیزیم را در طول قرن بیستم مشاهده کنید. همانطور که دیده می شود. مصرف فولاد بیش از 90 درصد مجموع کل سایر فلزات است. هرچند از فولاد در صنایع بسیار استفاده می شود اما کاربرد آن در صنایع هوایی در مقایسه با آلومینیوم و مواد کامپوزیتی محدودتر است. استفاده از فولاد در هلیکوپترها و هواپیماها به 5 تا 8 درصد از کل وزن آنها محدود است.

 

فولاد هواپیما سازی
میزان مصرف مواد مختلف در قرن بیستم

استفاده از فولاد در هواپیما معمولاً به بخش های حساس که نیاز به استحکام بسیار بالا دارد محدود می شود. به عبارت دیگر فولاد زمانی استفاده می شود که استحکام بالا بسیار مهم باشد. فولادهایی که در هواپیما استفاده میشود. استحکام تسلیمی بالاتر از 1500-2000 مگاپاسکال دارند. که از بالاترین استحکام آلومینیوم 500 – 650 مگاپاسکال یا کامپوزیت کربن – اپوکسی شبه ایزوتروپیک (Quasi-isoropic carbon – epoxy) (1000 – 750 مگاپاسکال) بسیار بالاتر است. علاوه بر استحکام بالا، فولادی که در هواپیما استفاده میشود. مدول الاستیک، سختی شکست و مقاومت خستگی بالایی دارد.

فولاد هواپیما سازی

همچنین علمکرد مکانیکی خود را در دماهای بالا (300-450 درجه سانتی گراد) نیز حفظ می کند. این ویژگی ها فولاد را به گزینه ای مناسب برای استفاده در سازه ی هواپیماهای سنگین تبدیل می کند.

 

هرچند از فولاد بنا به دلایلی که مهمترین آن وزن آن است در حجم های بسیار زیاد استفاده نمی شود. چگالی فولاد 7.2 گرم بر سانتیمترر مکعب است یعنی در حجم ثابت 2.5 برابر از آلومینیوم. 1.5 برابر از تیتانیوم و 3.5 برابر از کامپوزیت کربن-اپوکسی سنگین تر می باشد.

علاوه بر مشکل وزن، بیشتر فولادها نسبت به خوردگی حساس هستند. که باعث ایجاد حفره، ترک های ناشی از خوردگی و سایر اسیب ها می شود. فولادهای با استحکام بالا (High-strength) نیز مستعد تردی هیدروژنی (Hydrogen Embrittlement) ناشی از جذب هیدروژن هستند که نقطه ضعفی برای آنها به شمار می آید. غلظت بسیار کم هیدروژن حتی به اندازه 0.0001 درصد در فولاد می تواند باعث ترک هایی شود. که منجر به شکست در سطح تنش هایی کمتر از سحط استحکام تسلیم می شود.

 

قسمت هایی از سازه هواپیما که در آن از فولاد مقاومت بالا استفاده می شود. شامل چرخ های هواپیما، اتصالات بال، شاه تیرهای موتور و اسلت یا پیش بالاهاست. در شکل زیر می توانید از قسمت ها را ملاحظه کنید. بیشترین کاربرد فولاد نیز در ارابه های فرود ( Gear Landing) است. استفاده از فولاد در این قسمت به دلیل نیاز به سختی بالا، استحکام و مقاومت به خستگی زیاد است. چرا که در زمان فرود و تیک آف هواپیما نیروی بسیاری زیادی به این قسمت وارد می شود. به دلیل استحکام زیاد فولاد این قسمت از هواپیما می تواند نسبتاً کوچک ساخته شود. به گونه ای که به راحتی در قسمت زیر شکم هواپیما فضای بسیار کمی را اشغال کند. از فولاد همچنین در ریشه اتصال بال به بدنه و اسلت بال ها نیز استفاده می شود.

فولاد هواپیما سازی

قسمت هایی از هواپیما که از فولاد ساخته میشود

گرید های فولاد

آهن با کربن و وسایر عناصر ترکیب شده و پس از عملیات فورجینگ و حرارتی فولاد مقاومت بالا را می سازد. آهن خالص فلزی نرم است که استحکام تسلیمی کمتر از 100 مگاپاسکال دارد. اما به کمک ترکیب با فولاد و برخی عناصر آلیاژی و همچنین انجام عملیات های حرارتی استحکام آن افزایش داده می شود. به کمک ترکیب عناصر و همچنین فرآیندهای ترمودینامیکی می توان فولادهایی ساخت که استحکام تسلیم آن از 200 تا بالای 2000 مگاپاسکال متغیر است. برخی ویژگی های مهم دیگر فولاد از قبیل سختی، مقاومت به خستگی. و مقاومت خزشی نیز به وسیله ی عملیات ترمودینامیکی و آلیاژی قابل کنترل است.

 

امروزه بیش از صدها گرید مختلف فولاد وجود دارد. اگرچه تنها تعداد بسیار کمی از آنها دارای مقاومت و سختی بالا در حدی است که بتوان در صنعت هواپیماسازی از آنها استفاده کرد. فولادهای حاوی کمتر از 1.5 درصد کربن (همراه با سایر عناصر آلیاژی) هستند. و اغلب بر اساس مقدار کربن و عناصر آلیاژی که در خود دارند دسته بندی می شوند. برخی از مهمترین گروه های فولاد عبارتند از:

فولاد معمولی یا فولاد نرم

فولادهای معمولی که به عنوان فولادهای کم کربن نیز شناخته می شوند. کمتر از 2 درصد کرن در خود دارند و عموماً به وسیلۀ سردکاری سخت می شوند. فولاد معمولی استحکام تسلیم متوسط در حد 200 تا 300 مگاپاسکال دارد و به دلیل نرم بودن در صنایع هوایی کاربردی ندارد.

فولادهای کم آلیاژ مقاومت بالا

فلزهای کم آلیاژ مقاومت بالا (HSLA) فولادهایی هستند. که مقدار کمی کربن (کمتر از 0.2 درصد) مانند فولاد معمولی دارند. و مقدار کمی نیز عناصر آلیاژی مانند مس، نیکل، نیوبیوم، وانادیوم، کروم، مولیبدینوم و زیرکونیم در آنها استفاده می شود. فولادهای HSLA به عنوان فولادهای میکروآلیاژی شناخته می شوند. چرا که در مقایسه با سایر انواع فولادها مقدار عناصر آلیاژی آن بسیار کمتر است. استحکام تسلیم فولادهای HSLA بین 250 تا 600 مگاپاسکال است و در اتومبیل سازی، ساخت کامیون و پل سازی کاربرد دارد. استفاده از HSLA در صنعت هواپیمایی نیز کم است چرا که استحکام و مقاومت کمی در برابر خوردگی دارد.

فولاد هواپیما سازی

فولاد کربن متوسط

فولادهای کربن متوسط بین 0.25 تا 0.5 درصد کربن دارند و به وسیلۀ فرایندهای ترمومکانیکی به سختی بین 300 تا 1000 مگاپاسکال می رسند. این گروه از فولادها برای کاربردهای سازه ای بسیار مورد استفاده قرار می گیرند. در موتور اتومبیل ها، سازه های ساختمان ها و پل ها، کشتی ها، وگن های قطار و سازه های دور از دریا استفاده می شود. فولادهای کم کربن در صنایع هوایی کاربرد کمی دارد.

فولادهای کم آلیاژ کربن متوسط

فلزهای کم آلیاژ کم کربن بین 0.25 تا 0.5 درصد کربن دارند اما مقدار عناصر آلیاژی آن بیشتر است. که موجب افزایش سختی و و مقاومت آن در دمای بالاست. در ساختار این فولادها عناصری مانند نیکل، کروم، مولیبدنوم، وانادیوم و کبالت وجود دارد. نمونه های آلیاژ بالای این فولادها در ساخت فولاد ابزار استفاده می شود. ابزاری مانند مته، تیغه و قطعات ماشین ها که به سختی و مقاومت سایشی بالای در دماهای بالا نیاز دارند. سطح استحکام این فولادها به 2000 مگاپاسکال نیز می رسد. از این فولادها در ساخت هواپیما و به طور عمده در قسمت های ارابه فرود (Undercarriage) استفاده می شود.

فولادهای پیرسازی مارتنزیتی

فولادهای پیرسازی مارتنزیتی (Mareging steels) حاوی مقدار بسیار بالایی عنصر آلیاژی و مقدار بسیار کمی (کمتر از 0.03 درصد) کربن هستند. در کنار عملیات حرارتی که شامل سخت پیرسازی است. این دسته از فولادهای ترکیبی از استحکام بسیار بالا، سختی شکست و چکش خواری را دارا هستند. استحکام فولادهای پیرسازی مارتنزیتی در زنج 1500 تا 2300 مگاپاسکال قرار دارد و آنها را در زمره قوی ترین مواد فلزی قرار می دهد. از این گروه از فولاد در اجزایی از هواپیما که بارگذاری سنگین روی آن انجام می شود استفاده می گردد.

فولاد ضد زنگ

فولادهای ضد زنگ یا استنلس استیل ها موادی هستند که حاوی 0.08 تا 0.25 درصد کربن. و مقدار بالایی کروم (12 تا 26 درصد) می باشند. برخی مواقع از نیکل ( تا 22 درصد) نیز در ساخت استنلس استیل ها استفاده میشود. گریدهای مختلفی از استنلس استیل ها با مشخصات مکانیکی گوناگون وجود دارد . که استحکام تسلیمی بین 200 تا 2000 مگاپاسکال را می توانند داشته باشند. استیل های PH یا سخت کاری رسوبی به کاربردهای مرتبط با هوافضا بیشتر مورد استفاده قرار می گیرند. به این دلیل این کلاس از استیل در کنار مقاومت به خوردگی استحکام بالایی را نیز دارا هستند.

از میان تمام فولادهایی که ساخته شده و موجود هستند. فولادهای کم آلیاژ با کربن متوسط، فولادهای پیرسازی مارتنزیتی و استیل های PH بیشترین کاربرد را در ساخت هواپیما دارند.

در جدول زیر می توانید مشخصات فولادهایی که به صورت عمده در هواپیماسازی استفاده می شوند را مشاهده نمایید

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 

فولاد کربنی API 5L-بررسی خوردگی توأم با تنش (SSC) در ناحیه HAZ در خطوط انتقال گاز ترش

 

فولاد کربنی API 5L- فولاد ضد زنگ آستنیتی 316L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش

فولاد کربنی API 5L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش

در این تحقیق با هدف بررسی ترک های احتمالی که ایجاد شد. با بکار گیری از الکترودهای متفاوت و در نظر گرفتن متغیرهای عملیاتی. با ساختن قطعات آزمایش طبق استانداردهای مرتبط و از جنس لوله های مورد مصرف در مسیر گازهای ترش. که فولاد کربنی نوع API 5L و فولاد ضد زنگ آستنیتی نوع 316L می باشند. در پی یافتن میزان مقاومت به خوردگی تنشی و ترک های احتمالی به که به وجود آمد در ناحیه متأثر از حرارت جوش (HAZ). و در نتیجه کشف راه کاری مناسب به منظور حداقل رساندن این فرایند هستیم.

 

بررسی های میکروسکوپی بر روی نمونه ها در ناحیه تأثیر گذار گرمایی نشان می دهد. که اکثر نمونه ها در این ناحیه مستعد به تشکیل ترک های ناشی از خوردگی تنشی بوده. و ترکیبی از دو حالت ترک های میان دانه ای و بین دانه ای هستند. همچنین با افزایش میزان سولفور موجود در گاز ترش، ترک های میان دانه ای بیشتر و تأثیر گذارتری در نمونه ها مشاهده شد. نتایج نشان می دهد که کمترین ترک ها در استفاده از الکترودهای همسان با فلز پایه. از نظر ترکیبات شیمیایی و همچنین الکترودهای با درصد نیکل بالاتر نسبت به فلز پایه بوده است. همچنین تراکم ترک با توجه به مدت آزمایش 120 روز، و میزان سولفور در بیشتر نمونه های تحت تنش افزایش می یابد.

 

در ترک های ناشی از خوردگی تنشی دو نوع ترک کلی نمایان است. که شامل ترک های بین دانه ای، که در طول مرز دانه ها حرکت می کند، و ترک های میان دانه ای. که از داخل آنها عبور می کنند، می باشد.

نوع ترک بستگی به محیط خورنده و ساختمان فلز دارد. ترک خوردن معمولاً در جهت عمود بر تنش مورد اعمال اتفاق می افتد. هر فلز جهت وقوع ترک های ناشی از خوردگی تنشی نیاز به یک حد تنش کششی خاص و محیط خورنده ویژه دارد. به گونه ای که اگر تنش کششی اعمالی زیر این حد تنش خاص باشد، این نوع ترک ها رخ نمی دهند. در واقع هر چه استحکام کششی افزایش یابد مقاومت به ترک های ناشی از خوردگی تنشی نیز بهبود می یابد.

طراحی و انجام آزمایش

همانطوری که قبلاً اشاره شد هدف اصلی، بررسی رشد ترک در نواحی جوش در خطوط لوله انتقال گاز ترش در پالایشگاه ها می باشد. و با توجه به اینکه جنس این لوله ها طبق بررسی های مورد انجام. از منابع و نقشه های موجود از جنس فولاد کربنی نوع API 5L و فولاد آستنیتی نوع 316L می باشد، بدیهی است. که نمونه های انتخابی با توجه به فریضه اصلی که جنس آلیاژ ثابت است. باید از جنس فولاد با استاندارد NACE MR0175 و با همان خاصیت باشند.

بنابراین پس از انتخاب نوع فولاد، موضوعی که مطرح است. این است که بهترین راهکار و استاندارد جهت ساخت نمونه. که بتواند نتایج قابل قبولی را ارائه نماید. متناسب با تحقیق و تأیید شده انجمن ASTM هست. و راه حلی بسیار خوب برای تحلیل ترک ناشی از خوردگی تنشی باشد.

 

با توجه به اینکه در این استاندارد ابعاد و دیگر مشخصه های طراحی به طور کامل بیان شد. بنابراین تصمیم بر آن شد که طبق استاندارد فوق چندین نمونه از نمونه های مورد اندازه گیری. برش شوند و سایر عملیات ماشین کاری از قبیل سوراخ کاری، جوشکاری، خم کاری و غیره بر روی آنها انجام گیرد. حال نمونه های تولیدی، جهت قرار گیری در محیط واقعی برای بررسی های بعدی مهیا می شوند. جزئیات بیشتر نحوه ساخت نمونه ها و همچنین ترکیبات و نوع محیط در قسمت بعد بیان می شود.

نمونه آزمایش

پس از مشخص شدن نوع فولادها که همان فولاد کربنی نوع API 5L و فولاد آستنیتی نوع 316L. با ترکیبات شیمیایی طبق جدول شماره (1) و شماره (2) از جنس لوله و مخازن در شرایط واقعی می باشند. حال بررسی کار در شرایط آزمایشگاهی و تطابق آن با حالت واقعی. نمونه های آزمایشگاهی با استفاده از استاندارد ASTM-G30 تهیه گردیدند. Standard Practice for making and using U-Bend Stress Corrosion test Specimens. این استاندارد، دستورالعمل ساخت و استفاده نمونه های خم U. مانند را برای ارزیابی ترک های ناشی از خوردگی تنشی در بین فلزات بیان می کند.

نمونه U معمولاً یک تسمه مستطیل شکل با اندازه های مشخص بکار می گیرند. که به میزان 180 درجه دور یک جسم شعاعی مشخص خم گردیده. و در هنگام آزمایش خوردگی تنشی به همین حالت کرنش ثابت باقی می ماند.

نمونه های تحت تنش سپس در محیط قرار داده شده و تا زمان ترک که ایجاد می شود، بدین صورت قرار می گیرند. این نمونه های U مانند ممکن است که برای هر آلیاژ فلزی بکار روند. منوط به اینکه به اندازه کافی خاصیت چکش خواری داشته باشند. تا بتوان آنها را به شکل U بدون هیچ گونه ترک مکانیکی، درآورد.

 

در اکثر موارد جهت ساخت این نمونه ها از نوار یا ورق فلزی استفاده می کنند. اما آنها میتوانند توسط مفتول هاف ورق های نازک فلزی و یا قطعات جوشکاری شده یا ماشینکاری شوند و نیز به کار روند. از مزیت های عمده این روش ساخت نمونه. ساده و اقتصادی بودن آنها می باشد. و برای تشخیص اختلاف های بزرگ بین مقاومت ترک های ناشی از خوردگی تنشی از : الف) فلزات مختلف در محیط های یکسان. ب) یک فلز در شرایط متالورژیکی متفاوت در یک محیط یکسان، ج) یک فلز در چندین محیط، بسیار مفید و مناسب می باشد.

فولاد کربنی API 5L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش

در اینجا قبل از آزمایش. خلاصه ای از تأثیر ترک با توجه به ظرفیت تحمل فشار در خطوط لوله انتقال گاز به صورت تئوریکی نکاتی را یادآوری می نماییم.

ابتدا دو حالت ناشی از دو شکل عمق محدود و راه به در را بررسی می کنیم. نمودارهای ظرفیت تحمل فشار در خطوط لوله نفت و گاز بر حسب عوامل مختلف نشان دهندۀ تأثیر هر یک از این عوامل می باشد.

حالات مختلف عبارتند از :

ترک راه به در

فرض کنیم در راستای محور لوله یک ترک راه به در به طول 2C ایجاد شده است. فولیس (Folias) با تعریف پارامتری به نام و با رابطۀ عددی بی بعد به دست آورد.

که در این رابطه:

P: طول نرمالیزه شدۀ ترک

C: نصف طول ترک

Rm: شعاع میانی سطح مقطع لوله (میانگین شعاع داخلی و شعاع خارجی)

t: ضخامت دیوارۀ لوله

فولیس (Folias) سپس رابطه زیر را برای تحمل فشار ارائه نمود.

که در آن:

Pf: فشار واماندگی خط لوله

Y: تنش تسلیم می باشد

یک سال بعد اردوگان (Erdogan) رابطه ای دیگر پیشنهاد نمود که تطابق خوبی با رابطه فولیس (Folias) داشت:

ترک عمق محدود

حال فرض کنیم ترک حالت قبل راه به در نباشد، شکل شماره (1)، بلکه عمقی به اندازۀ a داشته باشد. کارتر (Carter) پیشنهاد داد که ظرفیت تحمل فشار با رابطۀ زیر محاسبه گردد.

در روابط بالا Ri و Ro به ترتیب شعاع های داخلی و خارجی لوله هستند. کارتر (Carter) بر خلاف روشی که فولیس (Folias) و اردوگان (Erdogan) به کار بردند. عبارت سمت چپ تساوی را بر حسب کسر بیان نکرد، در حالیکه پیش از او اوینگ (Ewing). ظرفیت تحمل فشار لولۀ دارای ترک عمق محدود را به صورت زیر بدست آورده بود:

فولاد کربنی API 5L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش

نحوه آزمایش و آزمایشات متالوگرافی

ابتدا طبق جدول استاندارد ASTMM تعداد 12 عدد تسمه فلزی از جنس فولاد کربنی API 5L و فولاد آستنیتی ضد زنگ نوع 316L تهیه نموده. و دقیقاً در خط تقارن عرضی تسمه برش زده و باید آنرا به دو قسمت مساوی تقسیم نمود. هدف از این کار انجام جوشکاری بر روی محل برش تسمه، جهت اتصال مجدد دو نیمه به یکدیگر. و همچنین موضوع دیگر در این محدوده از اتصال جوش باید تحقیق انجام پذیرد. نمونه ها توسط 12 مدل الکترود مختلف جوشکاری سپس تحت عملیات تنش زدایی PWHT قرار داده شدند.

توسط پیچ و مهره نمونه ها تحت تنش نرمال قرار گرفتند تا شرایط یکسان تنش ثابت در خطوط لوله بر روی نمونه ها اعمال شود. جهت ادامه آزمایش 6 عدد از نمونه های تحت تنش (3 نمونه فولاد کربنی و 3 نمونه فولاد آستنیتی). را در محیط کار و مسیر کمکی خط لوله گاز ترش با میزان سولفور 2000PPM بصورت ثابت نصب کرده. و شیر منتهی به این خط را مقداری باز نموده. تا نمونه ها در معرض سیال هیدروکربنی قرار گیرند.

 

6 نمونه دیگر (3 نمونه فولاد کربنی و 3 نمونه فولاد آستنیتی) در همان شرایط ولی با میزان سولفور 500ppm تحت تنش در مسیر گاز ترش قرار گرفتند. تا پایان آزمایش که 120 روز طول کشید، نمونه ها چهار بار مورد بررسی قرار گرفتند و مورد مقایسه قرار گرفتند.

بعد از اتمام مدت زمان در که در نظر می گیرند، نمونه ها از سیال گازی خارج می نمایند. و پس از شستشو هر نمونه را به ترتیب در محدوده متأثر از حرارت جوش و فلز جوش، توسط اره، برش عرضی می دهند. سپس نمونه ها جهت آزمایش متالوگرافی، علامت گذاری می گردند و تک تک در نواحی مورد نظر توسط سوهان های سایشی متفاوت (آج بزرگ و کوچک) تا سطح صاف و صیقلی سوهان کاری شدند. در مرحله بعد ابا استفاده از سنگ سنباده یا کاغذ سنباده سطوح را کاملاً صیقلی کرده. و در نهایت توسط پاشش محلول AL203. اکسید آلومینیوم با اندازه دانه 0/050 میکرون توسط دو محلول مخصوص بوسیله یک پارچه نرم صیقل می دهند. و توسط میکروسکوپ در مقیاس های مختلف مورد بررسی قرار گرفتند. و عمل عکس برداری جهت بررسی ریزساختارها و مرز دانه ها و ترک های احتمالی انجام گرفت.

تجزیه و تحلیل

ریخت شناسی ترک

در این مطالعه و بررسی، تعدادی از ترک ها در سطح که برش می خورد نمونه ها آزمایش U شکل. در ناحیه متأثر از حرارت جوش انتشار پیدا کردند. تمامی عوامل را که برای تشکیل ترک ناشی از خوردگی تنشی لازم است، در این مطالعه مؤثر بوده اند. بعلاوه مشاهدات میکروسکوپی نشان می دهند. که در این نمونه ها، ترک ها به دو صورت بین دانه ای و میان دانه ای گسترش می یابند.

شکل شماره (2) نمایان گر این مطلب می باشد. اما از لحاظ کمی انتشار ترک های میان دانه ای بیشتر و وسیع تر بوده است. مانند شکل (3) که این دلیلی بر مستعد بودن اینگونه فولادهای زنگ نزن آستنیتی. به ترک های میان دانه ای از روی مرزدانه ها و دانه ها عبور می کنند. در صورتی که ترک های بین دانه ای در طول مرز دانه ها عبور می نمایند. شکل (4) ترک های بین دانه ای را نشان می دهد.

 

بعضی از ترک های میان دانه ای دارای یک نوک هستند. و معمولاً از خود یک مسیر خوردگی مشهود در طول خط شکست نشان می دهند. به نظر می رسد که نسبت زمان تأخیر قبل از تشکیل ترک. با شروع حفره ها و مسیرهای خوردگی که از قبل موجود است وجود دارد. همچنین بیشتر ترک ها دارای مسیرهای انشعابی هستند و از مسیر اصلی خود انحراف یافتند.

یک تغییر محلی در ریزساختار در جلوی نوک ترک می تواند باعث انحراف ترک گردد. زیرا تغییر مسیر و انحراف ترک به ساختار ریزدانه ای مرتبط است. در دانه های آستنیتی ترک ها به هر دو صورت میان دانه ای و بین دانه ای رشد می کنند. و یک تغییر مسیر در ریزساختارف بعنوان مثال وجود یک ناحیه وسیع آستنیتی نسبت به یک ناحیه فریتی. در جلوی نوک ترک باعث انحراف مسیر ترک می گردد.

پارامترهای جوشکاری

در نمونه های آزمایش مشخص گردید که همه آنها در ناحیه تأثیر پذیر گرمایی جوش (HAZ) مستعد به تشکیل ترک بوده. و حتی حفره های متعدد نیز ایجاد می شود. لذا پارامترهای فوق در تشکیل این ترک ها مؤثر بوده اند. با توجه به این که همه این پارامترها برای نمونه ها یکسان در مد نظر قرار گرفتند. استفاده از آلیاژهای کم کربن (شاخه L). در الکترودها خطر حساس سازی را بوسیله کند کردن واکنش، و به حداقل رساندن رسوب کاربید، به حداقل می رساند. حتی تنشهای پسماند در ناحیه متأثر از حرارت نیز ممکن است باعث تشدید واکنش تشکیل رسوب گردد.

فولاد کربنی API 5L

همچنین شکل گرده جوش به صورت محدب انتخاب گردید که در این روش احتمال تشکیل ترک در هنگام سرد شدن ناچیز و کمتر است. شکل شماره (5) ساختار میکروسکپی جوش را نشان می دهد. نسبت پهنا به عمق نیز 2 به 1 در مد نظر قرار گرفت که این مقدار باعث تشکیل ترک در امتداد سطح نمی شود. در فرآیند جوشکاری از جریان جوش بالا و سرعت های جوش پایین که باعث کاهش میزان سردکاری می شود. و همچنین احتمال تشکیل ترک های زیر جوشی و پای جوش را به حداقل می رساند، نیز استفاده گردید.

 

بررسی نقش الکترود و ترکیبات آلیاژی

در این بررسی از 12 نمونه الکترود مختلف، طبق جداول شماره (3) و (4) در شاخه های فولادی آستنیتی و کربنی بکار رفت. که قطر این الکترودها به نسبت ضخامت قطعه مناسب هستند (25 میلی متر). و هر کدام با توجه به ترکیبات خاص خود تأثیر مفید و یا نامطلوب در عملکرد جوشکاری داشته اند.

جدول شمار (5) و (6) با توجه به نوع الکترود ها در محیط های مختلف با میزان سولفور متفاوت در گاز ترش. مشخصات ترک های موجود نمایان است. بعنوان مثال الکترود E310-15 که در دو نمونه آزمایشی از آن به عنوان فلز جوش به کار رفت. دارای درصد نیکل بیشتری در حدود 20% نسبت به فلز پایه می باشد. در نتیجه جوش تولیدی به دلیل دریافت نیکل از فلز جوش در اینجا محتوی هیچ فریتی در محل ریشه جوش نیست. در نتیجه عدم وجود فریت سبب ایجاد حساسیت جوش و ناحیه HAZ آن به ترک خوردگی می گردد.

معمولاً فلز جوش در فولادهای زنگ نزن آستنیتی یک ساختار ترد با 2 الی 10 درصد فریت در شبکه آستنیتی دارند. و در الکترود E7010-PI بیشترین نوع ترک میان دانه ای و بین دانه ای مشاهده گردید. که دلیل اصلی آن مقاومت ضعیف این نوع الکترود نسبت به تنش و میزان ترکیب زیاد کربن در آلیاژ این الکترود. نسبت به سایر الکترودها می باشد. اشکال (6) و (7) نشانگر این مدعی است.

فولاد کربنی API 5L

کمترین ترک در نمونه با الکترود E316L-15 به تشکیل می یابند. که این می تواند به دلیل همخوانی بسیار نزدیک درصدی آلیاژی فلز جوش و فلز پایه باشد. این پدیده در مورد فولادهای شاخه 304 نیز صادق است. زیرا در عمل اینگونه فولادها را با الکترود آستنیتی E-308 جوشکاری می کنند. همچنین در نمونه جوشی با الکترودو E309L-16 در نمونه تنش ثابت، ترک های کمتری مشاهده گردیده است.

و این می تواند به دلیل درصد نیکل و کروم بالای این الکترود باشد. در هر حال بنظر می رسد که تطابق آلیاژی فلز پایه و فلز جوش. یکی از عوامل مؤثر بهبود در ترک های مورد تشکیل ناشی از خوردگی تنشی می باشد. همچنین درصد ترکیبات آلیاژی الکترودها مانند مقدار نیکل بالا یا کربن پایین. یکی از عوامل مهم در جلوگیری از ترک های ناشی از خوردگی تنشی می باشد.

تنها نمونه ای که ترکی در آن نمایان نگردید، نمونه مورد جوشکاری با الکترود ER-70S3 می باشد. که بالاترین نوع مقاومت و بیشترین استحکام را تحت تنش در محیط خورنده از خود نشان داده است.

فولاد کربنی API 5L- فولاد ضد زنگ آستنیتی 316L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش

تأثیر تنش و عوامل محیطی

در نمونه های آزمایش شده با توجه به ساختار ریز دانه های آنها می توان دریافت. که با توجه به ترک های بوجود آمده سطح نمونه ها ظاهر ترد و شکننده به خود گرفته اند. و در این هنگام یک حرکت و جابجایی در تعدادی از دانه ها اتفاق افتاده است. کم کردن نوسانات مقدار حد آستانه را برای شروع ترک کم کرده و باعث افزایش میل به این گونه ترک ها می شود. مشاهده شد که با افزایش سولفور موجود در گاز ترش در نمونه های مورد آزمایش، ترک های ناشی از خوردگی تنشی بسیار محسوس تر بودند.

اما در نمونه های تحت تنش با میزان سولفور کمتر، سرعت رشد ترک به نسبت نمونه های دیگر کندتر و تابعی از زمان نیز بود. عوامل محیطی نیز از دیگر عوامل بروز ترک های ناشی از خوردگی تنشی می باشد. که با کمک تنش و ساختار آلیاژی این پدیده را تشدید می کنند. آب در نفت خام وجود دارد و حذف کامل آن مشکل است. آب به عنوان یک الکترولیت عمل نموده و باعث خوردگی می شود و همچنین اب باعث هیدرولیزه شدن مواد دیگر بویژه کلریدها میشود. بنابراین یک محیط اسیدی بوجود می آورد که با کمک تنش، عامل مخرب خواهد بود.

فولاد کربنی API 5L

موادی که در نمونه های مورد بررسی تأثیر گذار بودند، آب شور و کلریدها، سولفید هیدروژن و دی اکسید کربن و نیتروژن بوده است. ترک های ناشی از خوردگی تنشی ناشی از سولفید هیدروژن موجود در گاز. یک حالت ترکیبی از ترک میان دانه ای و بین دانه ای است. هیدرو کربن های گازی محتوی مقدار خیلی زیادی آب شور و گوگرد در شکل مرکاپتان با فرمول R-SH بودند. هر چند که این دو عامل توسط فرآیند های شیمیایی. مانند افزودن کاستیک سودا جهت حذف مرکاپتان و یا چند فازی کردن آب در دماهای مختلف جهت حذف آب شور به حداقل می رسند. اما به مقدار کم در گاز وجود دارند. که خود عاملی جهت بوجود آمدن خوردگی در مکان های مستعد می باشد.

نتیجه گیری

با توجه به مطالب و مطالعات مورد انجام که سپس بررسی شد. میتوان دریافت که عوامل عمده پیدایش ترک های ناشی از خوردگی تنشی در ساختارهای فولادی، سه عامل موادف تنش و محیط هستند. بنابراین شیوه ها و تکنیک های مهم که باعث کسب حداقل این فرآیند می گردد باید بکار روند. در این بررسی با استفاده از نمونه های استاندارد U شکل و انجام فرآیند جوشکاری بر روی این نمونه ها. با توجه به الکترودهای مختلف، تأثیر عوامل محیطی موجود در فرآیند پالایشگاه های گاز ترش بر روی نواحی جوش خطوط لوله پایش و بررسی گردیدند.

فولاد کربنی API 5L

سیالات خورنده موجود در گاز از قبیل سولفید هیدروژن، مرکاپتانها و آب های شور مخلوط شده در گازهای منتقل شونده. به کمک تنشهای موجود از عوامل مهم در ایجاد پدیده ترک های ناشی از خوردگی تنشی در ناحیه متأثر از حرارت جوش می باشد. کمترین ترک ها در استفاده از الکترودهای همسان با فلز پایه از نظر ترکیبات شیمیایی و همچنین درصد بالاتر نیکل الکترودها. نسبت به فلز پایه در ناحیه جوش نمونه های آزمایشی قابل مشاهده است.اکثر ترک های مورد ایجاد خصوصاً در نمونه های تحت آزمایش در گاز ترش با میزان سولفور بیشتر. از نوع ترک های ناشی از خوردگی تنشی میان دانه ای در ناحیه متأثر از حرارت جوش بوده اند.

از آنجاییکه گرمای جوش غالباً در منطقه جوش متمرکز می شود. چنین استنباط می گردد که کرنش و تغییر شکل مورد ایجاد. در هنگام عملیات جوشکاری می تواند سبب شکست و یا ایجاد تنش پسماند شود. این تنش های پسماند در شروع تولید ترک حائز اهمیت می باشند. استفاده از آلیاژهای کم کربن شاخه L در الکترودها، خطر حساس سازی را بوسیله کند کردن واکنش. و به باعث کسب حداقلی رسوب کاربیدهای که غنی می شوند. از کروم در راستای مرزدانه ها به حداقل می رساند.

 

نتیجه اینکه باعث کند شدن مسیر رشد ترک های ناشی از خوردگی تنشی در منطقه تأثیر گذار گرمایی جوش می شوند. گرمای اعمالی میزان سرد شدن در جوش دو پارامتر عمده تأثیر گذار بر روی مقاومت جوش در برابر ترک های ناشی از خوردگی تنشی و همچنین پدیده حفره دار شدن می باشد. حرارت اعمالی خیلی زیاد و میزان سرد شدن کم، سبب تفکیک عناصر آلیاژی و تشکیل مناطق خالی از کروم است. و باعث کاهش مقاومت نسبت به خوردگی موضعی می شود.

فولاد کربنی API 5L- فولاد ضد زنگ آستنیتی 316L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش
فولاد کربنی API 5L- فولاد ضد زنگ آستنیتی 316L-بررسی خوردگی توأم با تنش (SSC) در ناحیه haz در خطوط انتقال گاز ترش

 

جلیل جمالی، حسین اسماعیلی مزیدی، محمد عامل کاشی پز.دانشگاه آزاد اسلامی واحد شوشتر. دانشکده مکانیک-دانشگاه آزاد اسلامی واحد علوم تحقیقات خمین.بندر عسلویه مجتمع گاز پارس جنوبی پالایشگاه چهارم

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

A387 – ورق A387- فولاد A387-فولاد ضد زنگ – فولاد زنگ نزن-فولاد حرارتی-فولاد ضد خوردگی

 

A387 – فولاد A387-صفحه ی فولادی CL2-صفحه فولادی CL1فولاد ضد زنگ – فولاد ضد خوردگی – فولاد حرارتی- ASTM

ASTM A387 CL1- صفحه فولاد CL2- ورق ASTM A387-ورق مخزنی – ورق مخازن تحت فشار- ورق ضد خوردگی

ASTM A387 CL1، CL2 فولاد درجه یک نوع فولاد است که با ترکیب cr، Mo.، Cr-Mo میباشد. که عمدتا برای مخازن تحت فشار بالا و بالا استفاده میگردد. گرید فولاد A387 gr 12 CL1 / A387gr 12 CL2 مطابق با استاندارد ASTM ترکیبات شیمیایی. و خواص مکانیکی صفحات فولادی ASTM A387CL1 / A387CL2.

 

فولاد A387 CL1، CL2 ورق فولاد آلیاژی کروم-مولیبدن را برای دیگهای جوش داده شده. و مخازن تحت فشار برای فعالیت هایی. با درجه حرارت بالا طراحی و تولید میشوند.

این نوع از فولاد با گریدها و مشخصات و نمرات. 2، 12، 11، 22، 22L، 21، 21L، 5، 9 و 91 ساخته. و به بازار تقاضا در بخش صنعت عرضه میشود.

 

این نوع فولاد با روش حرارت متناوب و باز پخت تولید میشود. این نوع فولاد A387 gr11 / 12 CL1 / 2 با آنالیز و انجام پروسه حرارت ایجاد میشود. و مطابق با الزامات و عناصر شیمیایی موجود آن با نام های کربن.، منگنز، فسفر، گوگرد، سیلیکون، کروم، مولیبدن، نیکل، وانادیوم.، کلومیمیم، بور، نیتروژن، آلومینیوم، تیتانیوم ، و زیرکونیوم نوع گرید آن مشخص میگردد.

این نوع فلز برای ارزیابی نوع مقاوم آن تحت آزمایشات تنش قرار میگیرد . و همچنین با مقادیر مورد نیاز هر بخش از صنعت. میزان استحکام کششی و میزان مقاومت و ضخامت آن کنترل میگردد.

ارزیابی ریز ساختار و خواص مکانیکی اتصال غیر همسان فولاد A387-gr.11 و A240-tp-.316

اتصال غیر همسان فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی.- در گذشته بصورت وسیعی در صنایع بکار گرفته شده است. دو فولاد زنگ نزن آستنیتی A240-tp.316 .و فولاد کم آلیاژ فریتی A387-gr.11 توسط جوشکاری قوسی تنگستن. تحت گاز محافظ با دو جریان ثابت و پالسی و با استفاده از دو نوع فلز. پرکننده ی Er309l و Ernic-3 بهم جوش داده شدند.

 

پس از آزمونهای متالوگرافی آزمون تعیین ترکیب شیمیایی، ریز سختی سنجی، کشش و ضربه، مشخص گردید .که بطور کلی، نمونه های جوشکاری شده توسط جریان پالسی – بدلیل گرمای ورودی کمتر. و ایجاد اختلاط بیشتر در حوضچه ی جوش، ضمن کاهش وقوع پدیده های نا مطلوب متالوژیکی. مانند تشکیل منطقه ی کمبود از کربن، منطقه ی انتقالی و منطقه ی مخلوط نشده، بهبود. خصوصیت مکانیکی اتصال را در بر داشتند. نتایج نشان دادند که فلز پر کننده ی پایه نیکل، بدلیل محدود کردن نفوذ کربن.به درون حوضچه ی جوش و کاهش احتمال تشکیل منطقه ی. انتقالی نسبت به فلز پرکننده ی دیگر، مطلوب تر است.

در گذشته اتصال دهی ناهمجنس فولادهای فریتی کم آلیاژ به فولادهای زنگ نزن آستنیتی بطور گسترده ایی در مولدهای بخار، مبدل های حرارتی و تجهیزات لوله کشی در نیروگاه ها، پالایشگاه ها و صنایع پتروشیمی بکار رفته است. بطور مثال : در نیروگاههای با سوخت فسیلی، لوله های مرحله ی پیشگرم دیگهای بخار از نوع و جنس فولادهای کم آلیاژ هستند.

 

و لوله های بخش فوق گرمایش بدلیل دما و فشار کاری بسیار بالاتر، از نوع و جنس. فولاد زنگ نزن انتخاب میشوند. این انتخاب ، سبب صرفه جویی چشمگیر در هزینه ها خواهد شد. این اتصال به آسانی با اغلب روشهای مرسوم به خصوص جوشکاری قوسی تنگستن تحت گاز محافظ gtaw. و جوشکاری قوس الکترود روپوش دار smaw تولید شده است. مورد دیگر برای کاربرد این نوع اتصال، روکش کاری فولادهای کربنی یا کم آلیاژ. با فولادهای زنگ نزن آستنیتی یا آلیاژ پایه نیکل است. با این روش، میتوان مقاومت به خوردگی مخزن های از جنس فولاد کربنی. را با صرف کمترین هزینه تا مقدار قابل توجهی بهبود بخشید.

فرآیند اتصال بین فولاد زنگ نزن آستنیتی و فولاد کم آلیاژ فریتی، چند پدیده ی متالوژیکی قابل توجه به همراه دارد. یکی از پدیده هایی که در هنگام جوشکاری، عملیات حرارتی پس از جوشکاری و در حین قرارگیری در شرایط کاری برای این نوع اتصال رخ میدهد، انتقال کربن از فولاد کم آلیاژ به سمت ناحیه ی جوش میباشد.

 

این پدیده موجب ایجاد یک منطقه ی کمبود از کربن Carbon Depleted Zone,CDZ در ناحیه ی متأثر از حرارت در فولاد کم آلیاژ و در مجاورت مرز ذوب میشود. تحقیقات نشان داده اند که این منطقه ی کمبرد از کربن احتمالاً در معرض ترک خوردگی خزشی قرار خواهد گرفت. پروسه ی انتقال کربن، شامل انحلال کاربیدها در فولاد فریتی و نفوذ کربن بدرون حوضچه ی جوش میگردد. نیروی محرکه برای این پروسه، وجود شیب غلظتی کربن یا شیب اکتیویته ی کربن بین فولاد فریتی کم کروم و فلز جوش آستینی پر کروم است.

 

در اتصال های جوش بین دو فولاد نا همسان آستینی – فریتی، وجود منطقه ی انتقالی یا اختلاط جزیی درون حوضچه ی جوش و در مجاورت فولاد فریتی گزارش شده است. در این منطقه، اختلاط بین فلز جوش و فلز پایه ناقص است. و ترکیت شیمیایی آن شیئ از ترکیب فلز پایه تا فلز جوش است. پهنای منطقه ی انتقالی مطابق با نتایج آزمونهای انجام گرفته، بین 20 الی 100 میکرون و تابع عواملی ماننند ترکیب شیمیایی و میزان حرارت ورودی است.مرزی که این منطقه را از حوضچه جدا میکند. با مرز ذوب موازی است. و بعنوان مرز نوع II شناخته میشود. شناخت این ناحیه، در جوشهای نا همسان فریت به آستنیت بسیار اهمیت دارد. زیرا طبق آنچه پیش تر گفته شد . این منطقه یکی از مناطقی است که در معرض وقوع آسیب های زیادی میباشد.

a387-فولاد ضد خوردگی-فولاد ضد سایش- فولاد ضد زنگ-فولاد زنگ نزن-www.foolad-paytakht.ir

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

فولاد ضد زنگ داپلکس-جوشکاری فولاد ضد زنگ با ESAB

 

فولاد ضد زنگ داپلکس- جوشکاری فولاد ضد زنگ به روش ESAB. طیف کاملی از مواد مصرفی برای تمام گریدهای داپلکس و فرآیند جوشکاری مواد مصرفی داپلکس با کیفیت بالاو پشتیبانی فنی

فولاد ضد زنگ داپلکس

فولاد ضد زنگ داپلکس

طیف (دسترسی) کاملی از مواد مصرفی برای همه گریدهای داپلکس و فرآیندهای جوشکاری

فولادی ضد زنگ داپلکس (آستنیتی/فریتیک) یک خانواده بزرگ را شامل میشود. که از درجه های آلیاژ پایین تر. از طریق درجه های 22% cr به طور گسترده ای برای گیردهای فوق آلیاژی فوق العاده داپلکس و هترو داپلکس. برای کاربردهای بیشتر مورد استفاده قرار می گیرد.

همه آنها به لطف ریزساختار دو فازی متشکل از تقریباً ترکیبی جذاب از مقاومت بالا. و مقاومت در برابر خوردگی مناسب را ارائه می دهد. که شامل 50% فریت و 50% آستنیت است.

فولادهای ضد زنگ داپلکس به طور معمول در مقایسه با فولادهای زنگ نزن آستنیتتی با مقاومت در برابر خوردگی. دو برابر قدرت تسلیم دارند.

گریدهای داپلکس ناب

در طول سالهای اخیر تعدادی از فولادهای ضد زنگ داپلکس ناب بعنوان گزینه های مقرون به صرفه. برای گریدهای آستنیتی استاندارد مانند L304 معرفی شده اند. ( 1.4307) و L316 – (1.4401)

از فولادهای داپلکس در بسیاری پروژه ها برای ساخت نیروگاه های آب شیرین کن. لوله ها، مخازن ذخیره سازی، مخازن تحت فشار،پل های دریایی، پل های متحرک و… بکار گرفته می شوند.

هیچ تعریف روشنی از فولادهای ضد زنگ لاغر داپلکس وجود ندارد. اما این اصطلاح معمولاً برای گیردهای بدون Mo با محتوای (حجم) کم Ni استفاده میشود.

بعضی از Ni در فولادهای ضد زنگ داپلکس اغلب با ترکیبی از Mn و N جایگزین می شود. تا ضمن حفظ مقاومت، مقاومت در برابر خوردگی و تعادل فاز مناسب، هزینه آلیاژ را به حداقل خود نگه دارد.

طیف کاملی از مواد مصرفی برای همه گریدهای داپلکس و فرآیندهای جوشکاری

همچنین گریدهایی با محتوای Mo متوسط با افزودنیهای قابل توجهی چون مس وجود دارد. که غالباً به عنوان درجه های لاغر توصیف می شوند. همانطور که در جدول شماره 1 مشاهده می شود. گریدهای داپلکس به طور معمول دارای مقاومت در برابر خوردگی حفره ای بهتر با هم تراز. با درجه های استاندارد آستنیتتی هستند.

فولاد ضد زنگ داپلکس

مواد مصرفی ESAB توصیه شده

مواد مصرفی داپلکس، داپلکس و سوپر داپلکس به گونه ای طراحی شده اند. که حداقل خواص مکانیکی منطبق و مقاومت در برابر خوردگی را می توان تضمین کرد. بنابراین تقویت کننده آستنیت در مقایسه با درجه فولاد مربوطه، از عناصر بیشتری برخوردار هستند. تا از محتوای (حجم مقدار) فریت فلز جوش زیاد جلوگیری کنند.

به استثنای موارد کمی، تمام گیردهای لاغر (ناب) داپلکس را می توان با مواد مصرفی نوع 2209 جوش داد. که خصوصیات مکانیکی عالی و مقاومت در برابر خوردگی دارند.

به این حال، مواد مصرفی داپلکس ناب، مقرون به صرفه تر هستند. و از نظر متالورژی برای ایجاد خواص جوشکاری مشابه مواد پایه طراحی شده اند.

همچنین برخی از کاربردها وجود دارد که Mo تأثیر منفی بر مقاومت در برابر خوردگی دارد. و باعث می شود. مواد مصرفی از نوع 2209 کمتر مناسب شوند.

با این وجود تراز نازک آلیاژ MO S32003 ترجیحاً جوش داده می شود. با مواد مصرفی نوع 2209 برای اطمینان از تطابق مقاومت در برابر خوردگی.

جوشکاری فولاد ضد زنگ داپلکس به روش ESAB

قبل از جوشکاری

  • برای دستیابی به نفود خوب باید از شکاف ریشه (پایه). و زاویه اتصال کمی وسیعتر از آنچه برای فولاد ضد زنگ استاندارد استفاده می شود، استفاده کرد.
  • برای تسهیل جوشکاری ریشه زدن (پایه) از پشت سرامیک استفاده کنید.
  • اتصال و فلز پایه مجاور باید کاملاً تمیز شود.
  • فقط باید از برس ضد زنگ برای تمیز کردن استفاده شود.
  • پیش گرمایش به طور معمول توصیه نمی شود.
  • همیشه باید از الکترودهای خشک استفاده شود.

ESAB می تواند الکترودهای داپلکس ار در ESAB VacPac تهیه کند.

یک سیستم مؤثر برای اداره الکترودهای جوشکاری است.

مصرف متناسب دو بسته در هنگام یک شیفت کاری عادی است.

این روشهای خشک کردن مجدد پر هزینه را از بین می برد.

ورودی گرما و واسطه

توصیه های دما

  • ورودی گرما 0.5 – 1.5 کلیوژول بر میلی متر و Timax = 150 درجه سانتی گراد برای گریدهای داپلکس بدون چربی. به عنوان مثال : UNS S32101 ورودی های گرما به بالا تا kj/mm 2.5 در بیشتر موارد می تواند باشد. اعمال می شود.
  • ورودی گرما kj/mm 2.5-0.5 و Timax = 200 درجه سانتیگراد برای درجه های داپلکس. به عنوان مثال UNS S31803، EN 1.4462.
  • ورودی گرما: 1.5-0.2 کلیوژل بر میلی متر و Timax = 150 درجه سانتی گراد برای درجه های فوق العاده داپلکس. به عنوان مثال: UNS S32750.

گازهای محافظ و پشتیبان

  • مخلوط TIG Ar یا Ar-He.
  • MIG Ar-O2.

Ar-CO2، (1-3) یا Ar-He-O2 مخلوط (1-3).

  • FCAW Ar-CO2 مخلوط (25%) یا CO2 خالص.

هنگام جوشکاری ورودی گرما باید مربوط به ضخامت صفحه و روش جوشکاری باشد. از ورود حرارت خیلی کم یا خیلی زیاد باید خودداری شود.

فولادهای سوپر داپلکس به ویژه در برابر گرمای زیاد ورودی و دمای بین دنده حساس هستند.

گرمای ورودی

هنگام جوشکاری صفحه نازک نباید بیش از 1 کیلو ژول بر میلی متر باشد.

از زدن قوس خارج مفصل خودداری کنید. ضربات قوس می تواند به عنوان نقاط شروع برای خوردگی و ترک خوردگی حفره ها عمل کند.

  • برای جلوگیری از جمع شدن نیتروژن، طول قوس و بیرون کشیدن مناسب را حفظ کنید.
  • محافظ صحیح گاز ریشه مهم است. گازهای پشتیبان مناسب Ar با خلوص بالا و مخلوط حاوی N2 و H2 هستند. باید از بافت بیش از حد خودداری شود. این می تواند منجر به ورود بیش از حد گرما شود.

بعد از جوشکاری

تمیزکاری کامل بعد از جوشکاری برای دستیابی به مقاومت در برابر خوردگی بسیار ضروری است. تمام سرباره ها و اکسیدهای موجود در جوش و اطراف آن باید از بین بروند.

  • برس زدن باید به صورت دستی و فقط برس ضد زنگ انجام شود. برس های دوار (چرخشی) می توانند باعث ایجاد شکاف های ریز در فلز جوش شوند.
  • عملیات حرارتی بعدی به طور معمول مورد نیاز نیست. با این وجود، فولادهای داپلکس و فلزات جوشکاری می توانند از راه حل حرارتی استفاده شوند.
  • باید از کاهش استرس خودداری کرد. زیرا این امر می تواند باعث خرد شدن فولاد و فلز جوش شود.

اگر از روش توصیه شده از طرف تأمین کننده فولاد دنبال شود. می توان از شعله ور شدن صفحات تغییر شکل یافته استفاده کرد.

جوشکاری یک طرفه برای ساخت صفحه تولیدی ESAB

یک گزینه بسیار پربازده ، به استاندارد دو طرفه اتصال پانل ها در تانکرهای شیمیایی. با استفاده از یک طرفه SAWOSW روش های جوشکاری. با پشتوانه ویژه شار و با پشتیبانی از پشتی مس.

با استفاده از این روش، پنل ها نیازی به این کار ندارند . از ایستگاه جوشکاری منتقل شوند. چرخانده و قبل از اتمام جوشکاری جایگزین شده است. در عوض، مفصل (بند) رای می توان از یک طرف تکمیل کرد.

گفته می شود، این یک گزینه مقرون به صرفه است. که می تواند با هزینه کم، کار به راحتی اجرا شود.

پیش بینی محتوای فریت

تعادل فاز فلز جوش و گرما

منطقه آسیب دیده (HAZ) حیاتی است. که نوبت به آن می رسد. بدست آوردن خواص خوب در جوش فولاد ضد زنگ داپلکس.

فریت بیش از حد بالا باعث شکنندگی می شود. در حالی که کمبود فریت باعث از بین رفتن مقاومت در برابر ترک خوردگی در برابر تنش می شود.

محتوای فریت فلز جوش

باید به طور معمول در محدوده FN 30-100 باشد. (تقریباً 22-70%)

نمودار WCR – 92 ابزاری مفید برای محاسبه محتوای فریت فلزات جوشکاری است.

در فعالیت انجام شده

1- مواد پایه، SAF 2205 (EN 1.4462)، دوباره ذوب شده است.

2- فلز جوش MMA داپلکس، با OK 67.50 رسوب داده شده است.

3- فلز جوش MG داپلکس، با OK Autrod 16.86 رسوب داده شده است.

4- فلز جوش Super Duplex MMA، با OK 68.53 نهشته شده است.

X محل جوشکاری در SAF 2205 (EN 1.4462) جوش داده شده با OK 67.50 الکترود MMA با فرض رقت 30%.

نمودار وضوح WRC 1992 Crew و Nieg فولاد و فلز تمام جوشکاری از ترکیبات شیمیایی آنها محاسبه شده. روی نمودار رسم شده و توسط یک خط به هم متصل شده اند.

 

این خط تمام ترکیب ممکن را از فلز جوش برای درجات مختلف محلول نشان می دهد.

در مثال حاضر، 30% محلول بوده است. و استفاده شده و محتوای فریت پیش بینی شده. از جوش تقریباً FN 45 است.

راهنمای جهانی در زمینه جوشکاری و برشکاری

فن آوری و سیستم ها ESAB در خط مقدم فناوری جوشکاری و برشکاری فعالیت می کند.

بیش از صد سال پیشرفت مداوم در محصولات و فرآیندها. این شرکت را قادر می سازد تا در هر بخشی که ESAB فعالیت کند. با چالش های پیشرفت فن آوری روبرو شویم.

کیفیت و محیط

استانداردها

کیفیت، محیط زیست و ایمنی سه حوزه اصلی تمرکز هستند. ESAB یکی از معدود شرکت های بین المللی است که به استانداردهای ISO 14001 و OHSAS 18001 دست یافته است.

محیط زیست، بهداشت و ایمنی

سیستم های مدیریتی در کل امکانات تولید جهانی ما.

در ESAB کیفیت مداوم است. فرآیندی که در قلب تما فرآیندها و امکانات تولید ما در سراسر جهان قرار دارد. تولید چند ملیتی، محلی، نمایندگی و بین المللی. شبکه توزیع کنندگان مستقل مزایای کیفیت ESAB را به همراه دارد. و تخصص بی نظیر در زمینه مواد و فرآیند ها در دسترس همه مشتریان ما در هر جایی که. ساکن هستند.

 

ESAB مواد مصرفی جوش را به عنوان بخشی از طیف گسترده ای از سیمها و الکترودهای سیم جوشکاری. از جنس استنلس استیل، داپلکس- از جمله فولاد ضد زنگ لاغر و فوق العاده داپلکس – ارائه می دهد.

با انتخاب ESAB برای استفاده ، مشتریان می دانند. که از پشتیبانی فنی یکی از بزرگترین تأمین کنندگان مواد مصرفی جوشکاری در جهان برخوردار هستند.

ESAB تخصص و تجربه کاربردی را برای به اشتراک گذاشتن با شما دارد. هرگونه خطر از نظر مشکلات کیفیت، گران بودن را به حداقل می رساند.

ESAB از طروق گسترده خود قادر به تأمین مشتریان خود در سراسر جهان است.

اطمینان از عملکرد یکسان و با کیفیت بالا. با مشخصات کنترل شده مرکز از نظر : مواد اولیه – روش های آزمایش – سیستم های مدیریت کیفیت: ISO 14001/OHSAS 18001

 

ESAB : طیف کاملی از تجهیزات جوش و برش، مواد پرکننده و لوازم جانبی. برای هر نوع بخش صنعتی که در آن از فولاد ضد زنگ داپلکس استفاده شده است.

ما در سراسر جهان شبکه ای از دفاتر فروش و توزیع کنندگان را در اختیار شما قرار داده ایم. تا در هر کجا که باشید به شما خدمات و پشتیبانی بدهیم. همه اینها برای کمک به شما در افزایش بهره وری جوشکاری است. همه از یک منبع قابل اعتماد می توانید استفاده کنید.

با همکاری نزدیک با تیم های اصلی، ما از توانایی خود برای مهارت و نوآوری. برای ارائه طیف کاملی از محصولات برش و جوشکاری و لوازم سفارشی مناسب با نیازهای بازار محلی استفاده می کنیم.

راه حل های جهانی ما با سطح اطمینان بخشی از آگاهی از محیط زیست. در مورد مسائل مربوط به بهداشت و ایمنی در هر بخش. و آگاهی کامل از آن چالش های پیش روی جهان گسترده تر است.

طیف گسترده ای مواد مصرفی برای فولادهای ضد زنگ داپلکس

  • عملکرد مطابق با کیفیت بالا.
  • پشتیبانی فنی.
  • طیف کاملی از تجهیزات جوشکاری و برشکاری.
  • شبکه جهانی.
  • دفاتر فروش و توزیع کنندگان.
  • آگاهی زیست محیطی در فن آوری جوشکاری.
شرکت خشکه و فولاد پایتخت با مدیرت (جواد دلاکان)- فروش انواع فولاد آلیاژی در سراسر ایران

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )). صنعتگران عزیز، افتخار داریم که سی سال تجربه گرانبهای خویش را. در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی. برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

صفحه قبل 1 2 3 صفحه بعد